Adding all project files

This commit is contained in:
Martina Burlando 2025-08-02 02:00:33 +02:00
parent 6c9e127bdc
commit cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions

View file

@ -0,0 +1,28 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_evolla import *
from .modeling_evolla import *
from .processing_evolla import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View file

@ -0,0 +1,279 @@
# coding=utf-8
# Copyright 2025 Westlake Representational Learning Lab (Fajie Yuan Lab) team and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evolla model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class SaProtConfig(PretrainedConfig):
r"""This is the configuration class to store the configuration of a [`EvollaSaProtProteinEncoder`]. It is used to instantiate a
SaProt model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 446):
Vocabulary size of the protein sequence model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`EvollaModel`].
mask_token_id (`int`, *optional*, defaults to 4):
The id of the *mask* token in the protein sequence model.
pad_token_id (`int`, *optional*, defaults to 1):
The id of the *padding* token in the protein sequence model.
hidden_size (`int`, *optional*, defaults to 1280):
Dimensionality of the protein sequence model layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 33):
Number of hidden layers in the protein sequence model.
num_attention_heads (`int`, *optional*, defaults to 20):
Number of attention heads for each attention layer in the protein sequence model.
intermediate_size (`int`, *optional*, defaults to 5120):
Dimensionality of the intermediate layers in the protein sequence model.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the hidden layers in the protein sequence model.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities in the protein sequence model.
max_position_embeddings (`int`, *optional*, defaults to 1026):
The maximum sequence length that the protein sequence model might ever be used with. Typically set this to
something large just in case (e.g., 512 or 1024 or 2048).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for the layer normalization layer in the protein sequence model.
position_embedding_type (`str`, *optional*, defaults to `"rotary"`):
The type of position embedding to use in the protein sequence model. Currently only `"rotary"` is supported.
emb_layer_norm_before (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization before the position embedding in the protein sequence model.
token_dropout (`bool`, *optional*, defaults to `True`):
Whether to apply dropout to the tokens in the protein sequence model."""
def __init__(
self,
vocab_size=446,
mask_token_id=4,
pad_token_id=1,
hidden_size=1280,
num_hidden_layers=33,
num_attention_heads=20,
intermediate_size=5120,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1026,
initializer_range=0.02,
layer_norm_eps=1e-05,
position_embedding_type="rotary",
use_cache=True,
emb_layer_norm_before=False,
token_dropout=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.emb_layer_norm_before = emb_layer_norm_before
self.token_dropout = token_dropout
class EvollaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`EvollaModel`]. It is used to instantiate an
Evolla model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Evolla-10B.
e.g. [westlake-repl/Evolla-10B-hf](https://huggingface.co/westlake-repl/Evolla-10B-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
protein_encoder_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SaProtConfig`].
vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the Evolla llama model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`EvollaModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the llama layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimensionality of the intermediate layers in the llama model.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the llama model.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the llama model.
num_key_value_heads (`int`, *optional*, defaults to 8):
Number of key-value pairs for each attention layer in the llama model.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the llama model. If string, `"gelu"`, `"relu"`,
`"selu"` and `"silu"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for the RMS-norm layer in the llama model.
rope_theta (`float`, *optional*, defaults to 500000.0):
The threshold value for the RoPE layer in the llama model.
rope_scaling (`float`, *optional*):
The scaling factor for the RoPE layer in the llama model.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the attention layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention layer.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the MLP layer.
aligner_ffn_mult (`int`, *optional*, defaults to 4):
The FFN multiplier for the aligner layer.
aligner_enable_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the aligner layer.
aligner_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities in the aligner layer.
aligner_num_add_layers (`int`, *optional*, defaults to 8):
The number of additional layers for the aligner layer.
resampler_depth (`int`, *optional*, defaults to 6):
The depth of the resampler layer in the llama model.
resampler_dim_head (`int`, *optional*, defaults to 64):
The dimension of the heads in the resampler layer in the llama model.
resampler_heads (`int`, *optional*, defaults to 8):
The number of heads in the resampler layer in the llama model.
resampler_num_latents (`int`, *optional*, defaults to 64):
The number of latents in the resampler layer in the llama model.
resampler_ff_mult (`int`, *optional*, defaults to 4):
The FFN multiplier for the resampler layer.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
bos_token_id (`int`, *optional*, defaults to 128000):
The id of the *beginning-of-sequence* token.
eos_token_id (`int`, *optional*, defaults to 128009):
The id of the *end-of-sequence* token.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to tie the input and output word embeddings.
Example:
```python
>>> from transformers import EvollaModel, EvollaConfig
>>> # Initializing a Evolla evolla-10b style configuration
>>> configuration = EvollaConfig()
>>> # Initializing a model from the evolla-10b style configuration
>>> model = EvollaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "EvollaModel"
sub_configs = {"protein_encoder_config": SaProtConfig}
def __init__(
self,
protein_encoder_config=None,
vocab_size=128256, # llama vocab size
hidden_size=4096, # llama hidden size
intermediate_size=14336, # llama intermediate size
num_hidden_layers=32, # llama num layers
num_attention_heads=32, # llama num heads
num_key_value_heads=8, # llama num key-value heads
hidden_act="silu", # llama activation function
max_position_embeddings=8192, # llama rope max length
rms_norm_eps=1e-05,
rope_theta=500000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
aligner_ffn_mult=4,
aligner_enable_bias=True,
aligner_attention_probs_dropout_prob=0.1,
aligner_num_add_layers=8,
resampler_depth=6,
resampler_dim_head=64,
resampler_heads=8,
resampler_num_latents=64,
resampler_ff_mult=4,
initializer_range=0.02,
pad_token_id=None,
bos_token_id=128000,
eos_token_id=128009,
use_cache=False,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.rms_norm_eps = rms_norm_eps
self.tie_word_embeddings = tie_word_embeddings
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.aligner_ffn_mult = aligner_ffn_mult
self.aligner_enable_bias = aligner_enable_bias
self.aligner_attention_probs_dropout_prob = aligner_attention_probs_dropout_prob
self.aligner_num_add_layers = aligner_num_add_layers
self.use_cache = use_cache
self.initializer_range = initializer_range
self.resampler_depth = resampler_depth
self.resampler_dim_head = resampler_dim_head
self.resampler_heads = resampler_heads
self.resampler_num_latents = resampler_num_latents
self.resampler_ff_mult = resampler_ff_mult
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
# Subconfig
if protein_encoder_config is None:
protein_encoder_config = {}
logger.info("`protein_encoder_config` is `None`. Initializing the `SaProtConfig` with default values.")
self.protein_encoder_config = SaProtConfig(**protein_encoder_config)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["EvollaConfig"]

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,247 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for EVOLLA.
"""
import os
from typing import Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import (
ProcessorMixin,
)
from ..auto import AutoTokenizer
PROTEIN_VALID_KEYS = ["aa_seq", "foldseek", "msa"]
class EvollaProcessor(ProcessorMixin):
r"""
Constructs a EVOLLA processor which wraps a LLama tokenizer and SaProt tokenizer (EsmTokenizer) into a single processor.
[`EvollaProcessor`] offers all the functionalities of [`EsmTokenizer`] and [`LlamaTokenizerFast`]. See the
docstring of [`~EvollaProcessor.__call__`] and [`~EvollaProcessor.decode`] for more information.
Args:
protein_tokenizer (`EsmTokenizer`):
An instance of [`EsmTokenizer`]. The protein tokenizer is a required input.
tokenizer (`LlamaTokenizerFast`, *optional*):
An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input.
protein_max_length (`int`, *optional*, defaults to 1024):
The maximum length of the sequence to be generated.
text_max_length (`int`, *optional*, defaults to 512):
The maximum length of the text to be generated.
"""
attributes = ["protein_tokenizer", "tokenizer"]
valid_kwargs = ["sequence_max_length"]
# protein_tokenizer_class = "EsmTokenizer"
# tokenizer_class = "LlamaTokenizerFast"
protein_tokenizer_class = "AutoTokenizer"
tokenizer_class = "AutoTokenizer"
protein_tokenizer_dir_name = "protein_tokenizer"
# tokenizer_dir_name = "text_tokenizer"
def __init__(self, protein_tokenizer, tokenizer=None, protein_max_length=1024, text_max_length=512, **kwargs):
if protein_tokenizer is None:
raise ValueError("You need to specify an `protein_tokenizer`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(protein_tokenizer, tokenizer)
self.tokenizer.pad_token = "<|reserved_special_token_0|>"
self.protein_max_length = protein_max_length
self.text_max_length = text_max_length
def process_proteins(self, proteins, protein_max_length=1024):
sa_sequences = []
for protein in proteins:
aa_seq = protein.get("aa_seq")
foldseek = protein.get("foldseek")
sa_sequence = "".join([s.upper() + f.lower() for s, f in zip(aa_seq, foldseek)])
sa_sequences.append(sa_sequence)
sa_tokens = self.protein_tokenizer.batch_encode_plus(
sa_sequences, return_tensors="pt", truncation=True, max_length=protein_max_length, padding=True
)
return sa_tokens
def process_text(
self,
texts,
text_max_length: int = 512,
):
prompts = []
for messages in texts:
prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
prompts.append(prompt)
prompt_inputs = self.tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=text_max_length,
)
return prompt_inputs
def __call__(
self,
proteins: Optional[Union[list[dict], dict]] = None,
messages_list: Optional[Union[list[list[dict]], list[dict]]] = None,
protein_max_length: Optional[int] = None,
text_max_length: Optional[int] = None,
**kwargs,
):
r"""This method takes batched or non-batched proteins and messages_list and converts them into format that can be used by
the model.
Args:
proteins (`Union[List[dict], dict]`):
A list of dictionaries or a single dictionary containing the following keys:
- `"aa_seq"` (`str`) -- The amino acid sequence of the protein.
- `"foldseek"` (`str`) -- The foldseek string of the protein.
messages_list (`Union[List[List[dict]], List[dict]]`):
A list of lists of dictionaries or a list of dictionaries containing the following keys:
- `"role"` (`str`) -- The role of the message.
- `"content"` (`str`) -- The content of the message.
protein_max_length (`int`, *optional*, defaults to 1024):
The maximum length of the sequence to be generated.
text_max_length (`int`, *optional*, defaults to 512):
The maximum length of the text.
Return:
a dict with following keys:
- `protein_input_ids` (`torch.Tensor` of shape `(batch_size, sequence_length)`) -- The input IDs for the protein sequence.
- `protein_attention_mask` (`torch.Tensor` of shape `(batch_size, sequence_length)`) -- The attention mask for the protein sequence.
- `text_input_ids` (`torch.Tensor` of shape `(batch_size, sequence_length)`) -- The input IDs for the text sequence.
- `text_attention_mask` (`torch.Tensor` of shape `(batch_size, sequence_length)`) -- The attention mask for the text sequence.
"""
# proteins and messages_list should be provided
if proteins is None or messages_list is None:
raise ValueError("You need to specify `messages_list` and `proteins`.")
protein_max_length = protein_max_length if protein_max_length is not None else self.protein_max_length
text_max_length = text_max_length if text_max_length is not None else self.text_max_length
# proteins should be List[dict]
if isinstance(proteins, dict):
proteins = [proteins]
# messages_list should be List[List[dict]]
if isinstance(messages_list, (list, tuple)) and not isinstance(messages_list[0], (list, tuple)):
messages_list = [messages_list]
# Check if batched proteins are in the correct format
if isinstance(proteins, (list, tuple)) and not all(isinstance(p, dict) for p in proteins):
raise ValueError("The proteins should be a list of dictionaries, but not all elements are dictionaries.")
if isinstance(proteins, (list, tuple)) and not all(
all(k in PROTEIN_VALID_KEYS for k in p.keys()) for p in proteins
):
raise ValueError(
"There should be a list of dictionaries with keys: "
f"{', '.join(PROTEIN_VALID_KEYS)} for each protein."
f"But got: {proteins}"
)
# Check if batched messages_list is in the correct format
if isinstance(messages_list, (list, tuple)):
for messages in messages_list:
if not isinstance(messages, (list, tuple)):
raise ValueError(f"Each messages in messages_list should be a list instead of {type(messages)}.")
if not all(isinstance(m, dict) for m in messages):
raise ValueError(
"Each message in messages_list should be a list of dictionaries, but not all elements are dictionaries."
)
if any(len(m.keys()) != 2 for m in messages) or any(
set(m.keys()) != {"role", "content"} for m in messages
):
raise ValueError(
"Each message in messages_list should be a list of dictionaries with two keys: 'role' and 'content'."
f"But got: {messages}"
)
else:
raise ValueError(
f"The messages_list should be a list of lists of dictionaries, but it's {type(messages_list)}."
)
sa_tokens = self.process_proteins(proteins, protein_max_length)
text_tokens = self.process_text(messages_list, text_max_length)
return BatchFeature(
data={
"protein_input_ids": sa_tokens["input_ids"],
"protein_attention_mask": sa_tokens["attention_mask"],
"input_ids": text_tokens["input_ids"],
"attention_mask": text_tokens["attention_mask"],
}
)
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
def protein_batch_decode(self, *args, **kwargs):
return self.protein_tokenizer.batch_decode(*args, **kwargs)
def protein_decode(self, *args, **kwargs):
return self.protein_tokenizer.decode(*args, **kwargs)
# overwrite to save the protein tokenizer in a separate folder
# Adapted from instructblip.processing_instructblip.py (https://github.com/huggingface/transformers/blob/9b479a245b793cac2a8b2e87c6d8e81bb24e20c4/src/transformers/models/instructblip/processing_instructblip.py#L191-L221)
def save_pretrained(self, save_directory, **kwargs):
# only save the protein tokenizer in sub_dir
self.protein_tokenizer.save_pretrained(os.path.join(save_directory, self.protein_tokenizer_dir_name))
# we modify the attributes so that only the text tokenizer are saved in the main folder
protein_tokenizer_present = "protein_tokenizer" in self.attributes
# find the correct position of it in the attributes list
protein_tokenizer_index = self.attributes.index("protein_tokenizer") if protein_tokenizer_present else None
if protein_tokenizer_present and protein_tokenizer_index is not None:
self.attributes.remove("protein_tokenizer")
outputs = super().save_pretrained(save_directory, **kwargs)
if protein_tokenizer_present and protein_tokenizer_index is not None:
self.attributes.insert(protein_tokenizer_index, "protein_tokenizer")
return outputs
# overwirte to load the protein tokenizer from a separate folder
# Adapted from instructblip.processing_instructblip.py (https://github.com/huggingface/transformers/blob/9b479a245b793cac2a8b2e87c6d8e81bb24e20c4/src/transformers/models/instructblip/processing_instructblip.py#L191-L221)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
# if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
if isinstance(processor, tuple):
processor = processor[0]
protein_tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, subfolder=cls.protein_tokenizer_dir_name
)
processor.protein_tokenizer = protein_tokenizer
return processor
__all__ = ["EvollaProcessor"]