Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
|
@ -0,0 +1,191 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Mixtral model configuration"""
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class MixtralConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
|
||||
Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.
|
||||
|
||||
[mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
|
||||
[mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`MixtralModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 14336):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*, defaults to 8):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details, check out [this
|
||||
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
|
||||
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
|
||||
The attention head dimension.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
||||
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
|
||||
allows sequence of up to 4096*32 tokens.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*):
|
||||
The id of the padding token.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
The id of the "beginning-of-sequence" token.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
The id of the "end-of-sequence" token.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether the model's input and output word embeddings should be tied.
|
||||
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
sliding_window (`int`, *optional*):
|
||||
Sliding window attention window size. If not specified, will default to `4096`.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
||||
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
||||
parameter
|
||||
num_local_experts (`int`, *optional*, defaults to 8):
|
||||
Number of experts per Sparse MLP layer.
|
||||
output_router_logits (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the router logits should be returned by the model. Enabling this will also
|
||||
allow the model to output the auxiliary loss. See [here]() for more details
|
||||
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
||||
The aux loss factor for the total loss.
|
||||
router_jitter_noise (`float`, *optional*, defaults to 0.0):
|
||||
Amount of noise to add to the router.
|
||||
|
||||
```python
|
||||
>>> from transformers import MixtralModel, MixtralConfig
|
||||
|
||||
>>> # Initializing a Mixtral 7B style configuration
|
||||
>>> configuration = MixtralConfig()
|
||||
|
||||
>>> # Initializing a model from the Mixtral 7B style configuration
|
||||
>>> model = MixtralModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "mixtral"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
base_model_tp_plan = {
|
||||
"layers.*.self_attn.q_proj": "colwise",
|
||||
"layers.*.self_attn.k_proj": "colwise",
|
||||
"layers.*.self_attn.v_proj": "colwise",
|
||||
"layers.*.self_attn.o_proj": "rowwise",
|
||||
"layers.*.block_sparse_moe.gate": "colwise_rep", # we need to replicate here to correctly route experts
|
||||
"layers.*.block_sparse_moe.experts.*.w1": "colwise",
|
||||
"layers.*.block_sparse_moe.experts.*.w2": "rowwise",
|
||||
"layers.*.block_sparse_moe.experts.*.w3": "colwise",
|
||||
}
|
||||
base_model_pp_plan = {
|
||||
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
||||
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
||||
"norm": (["hidden_states"], ["hidden_states"]),
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=14336,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=8,
|
||||
head_dim=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096 * 32,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=1e6,
|
||||
sliding_window=None,
|
||||
attention_dropout=0.0,
|
||||
num_experts_per_tok=2,
|
||||
num_local_experts=8,
|
||||
output_router_logits=False,
|
||||
router_aux_loss_coef=0.001,
|
||||
router_jitter_noise=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.attention_dropout = attention_dropout
|
||||
self.head_dim = head_dim
|
||||
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.num_local_experts = num_local_experts
|
||||
self.output_router_logits = output_router_logits
|
||||
self.router_aux_loss_coef = router_aux_loss_coef
|
||||
self.router_jitter_noise = router_jitter_noise
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["MixtralConfig"]
|
Loading…
Add table
Add a link
Reference in a new issue