Adding all project files
This commit is contained in:
parent
6c9e127bdc
commit
cd4316ad0f
42289 changed files with 8009643 additions and 0 deletions
|
@ -0,0 +1,28 @@
|
|||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import _LazyModule
|
||||
from ...utils.import_utils import define_import_structure
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_prophetnet import *
|
||||
from .modeling_prophetnet import *
|
||||
from .tokenization_prophetnet import *
|
||||
else:
|
||||
import sys
|
||||
|
||||
_file = globals()["__file__"]
|
||||
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,180 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""ProphetNet model configuration"""
|
||||
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class ProphetNetConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a
|
||||
ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
|
||||
configuration with the defaults will yield a similar configuration to that of the ProphetNet
|
||||
[microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
activation_dropout (`float`, *optional*, defaults to 0.1):
|
||||
The dropout ratio for activations inside the fully connected layer.
|
||||
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||||
vocab_size (`int`, *optional*, defaults to 30522):
|
||||
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
|
||||
the `inputs_ids` passed when calling [`ProphetNetModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 1024):
|
||||
Dimensionality of the layers and the pooler layer.
|
||||
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||||
num_encoder_layers (`int`, *optional*, defaults to 12):
|
||||
Number of encoder layers.
|
||||
num_encoder_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the `intermediate` (often named feed-forward) layer in decoder.
|
||||
num_decoder_layers (`int`, *optional*, defaults to 12):
|
||||
Number of decoder layers.
|
||||
num_decoder_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.1):
|
||||
The dropout ratio for the attention probabilities.
|
||||
dropout (`float`, *optional*, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
init_std (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
add_cross_attention (`bool`, *optional*, defaults to `True`):
|
||||
Whether cross-attention layers should be added to the model.
|
||||
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
||||
Whether this is an encoder/decoder model.
|
||||
pad_token_id (`int`, *optional*, defaults to 1)
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 0)
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 2)
|
||||
End of stream token id.
|
||||
ngram (`int`, *optional*, defaults to 2)
|
||||
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
|
||||
token.
|
||||
num_buckets (`int`, *optional*, defaults to 32)
|
||||
The number of buckets to use for each attention layer. This is for relative position calculation. See the
|
||||
[T5 paper](see https://huggingface.co/papers/1910.10683) for more details.
|
||||
relative_max_distance (`int`, *optional*, defaults to 128)
|
||||
Relative distances greater than this number will be put into the last same bucket. This is for relative
|
||||
position calculation. See the [T5 paper](see https://huggingface.co/papers/1910.10683) for more details.
|
||||
disable_ngram_loss (`bool`, *optional*, defaults to `False`):
|
||||
Whether be trained predicting only the next first token.
|
||||
eps (`float`, *optional*, defaults to 0.0):
|
||||
Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label
|
||||
smoothing is performed.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
"""
|
||||
|
||||
model_type = "prophetnet"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
attribute_map = {
|
||||
"num_attention_heads": "num_encoder_attention_heads",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
activation_dropout: Optional[float] = 0.1,
|
||||
activation_function: Optional[Union[str, Callable]] = "gelu",
|
||||
vocab_size: Optional[int] = 30522,
|
||||
hidden_size: Optional[int] = 1024,
|
||||
encoder_ffn_dim: Optional[int] = 4096,
|
||||
num_encoder_layers: Optional[int] = 12,
|
||||
num_encoder_attention_heads: Optional[int] = 16,
|
||||
decoder_ffn_dim: Optional[int] = 4096,
|
||||
num_decoder_layers: Optional[int] = 12,
|
||||
num_decoder_attention_heads: Optional[int] = 16,
|
||||
attention_dropout: Optional[float] = 0.1,
|
||||
dropout: Optional[float] = 0.1,
|
||||
max_position_embeddings: Optional[int] = 512,
|
||||
init_std: Optional[float] = 0.02,
|
||||
is_encoder_decoder: Optional[bool] = True,
|
||||
add_cross_attention: Optional[bool] = True,
|
||||
decoder_start_token_id: Optional[int] = 0,
|
||||
ngram: Optional[int] = 2,
|
||||
num_buckets: Optional[int] = 32,
|
||||
relative_max_distance: Optional[int] = 128,
|
||||
disable_ngram_loss: Optional[bool] = False,
|
||||
eps: Optional[float] = 0.0,
|
||||
use_cache: Optional[bool] = True,
|
||||
pad_token_id: Optional[int] = 0,
|
||||
bos_token_id: Optional[int] = 1,
|
||||
eos_token_id: Optional[int] = 2,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.encoder_ffn_dim = encoder_ffn_dim
|
||||
self.num_encoder_layers = num_encoder_layers
|
||||
self.num_encoder_attention_heads = num_encoder_attention_heads
|
||||
self.decoder_ffn_dim = decoder_ffn_dim
|
||||
self.num_decoder_layers = num_decoder_layers
|
||||
self.num_decoder_attention_heads = num_decoder_attention_heads
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.init_std = init_std # Normal(0, this parameter)
|
||||
self.activation_function = activation_function
|
||||
|
||||
# parameters for prophetnet
|
||||
self.ngram = ngram
|
||||
self.num_buckets = num_buckets
|
||||
self.relative_max_distance = relative_max_distance
|
||||
self.disable_ngram_loss = disable_ngram_loss
|
||||
self.eps = eps
|
||||
|
||||
# 3 Types of Dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.activation_dropout = activation_dropout
|
||||
self.dropout = dropout
|
||||
|
||||
self.use_cache = use_cache
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
is_encoder_decoder=is_encoder_decoder,
|
||||
add_cross_attention=add_cross_attention,
|
||||
decoder_start_token_id=decoder_start_token_id,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def num_hidden_layers(self) -> int:
|
||||
return self.num_encoder_layers + self.num_decoder_layers
|
||||
|
||||
@num_hidden_layers.setter
|
||||
def num_hidden_layers(self, value):
|
||||
raise NotImplementedError(
|
||||
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
|
||||
" `num_decoder_layers`."
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["ProphetNetConfig"]
|
File diff suppressed because it is too large
Load diff
|
@ -0,0 +1,480 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import collections
|
||||
import os
|
||||
import unicodedata
|
||||
from collections.abc import Iterable
|
||||
from typing import Optional
|
||||
|
||||
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"}
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
||||
def whitespace_tokenize(text):
|
||||
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
||||
text = text.strip()
|
||||
if not text:
|
||||
return []
|
||||
tokens = text.split()
|
||||
return tokens
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
||||
class BasicTokenizer:
|
||||
"""
|
||||
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
||||
|
||||
Args:
|
||||
do_lower_case (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to lowercase the input when tokenizing.
|
||||
never_split (`Iterable`, *optional*):
|
||||
Collection of tokens which will never be split during tokenization. Only has an effect when
|
||||
`do_basic_tokenize=True`
|
||||
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to tokenize Chinese characters.
|
||||
|
||||
This should likely be deactivated for Japanese (see this
|
||||
[issue](https://github.com/huggingface/transformers/issues/328)).
|
||||
strip_accents (`bool`, *optional*):
|
||||
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
||||
value for `lowercase` (as in the original BERT).
|
||||
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
||||
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
||||
the full context of the words, such as contractions.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
do_lower_case=True,
|
||||
never_split=None,
|
||||
tokenize_chinese_chars=True,
|
||||
strip_accents=None,
|
||||
do_split_on_punc=True,
|
||||
):
|
||||
if never_split is None:
|
||||
never_split = []
|
||||
self.do_lower_case = do_lower_case
|
||||
self.never_split = set(never_split)
|
||||
self.tokenize_chinese_chars = tokenize_chinese_chars
|
||||
self.strip_accents = strip_accents
|
||||
self.do_split_on_punc = do_split_on_punc
|
||||
|
||||
def tokenize(self, text, never_split=None):
|
||||
"""
|
||||
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
||||
|
||||
Args:
|
||||
never_split (`List[str]`, *optional*)
|
||||
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
||||
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
||||
"""
|
||||
# union() returns a new set by concatenating the two sets.
|
||||
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
||||
text = self._clean_text(text)
|
||||
|
||||
# This was added on November 1st, 2018 for the multilingual and Chinese
|
||||
# models. This is also applied to the English models now, but it doesn't
|
||||
# matter since the English models were not trained on any Chinese data
|
||||
# and generally don't have any Chinese data in them (there are Chinese
|
||||
# characters in the vocabulary because Wikipedia does have some Chinese
|
||||
# words in the English Wikipedia.).
|
||||
if self.tokenize_chinese_chars:
|
||||
text = self._tokenize_chinese_chars(text)
|
||||
# prevents treating the same character with different unicode codepoints as different characters
|
||||
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
||||
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
||||
split_tokens = []
|
||||
for token in orig_tokens:
|
||||
if token not in never_split:
|
||||
if self.do_lower_case:
|
||||
token = token.lower()
|
||||
if self.strip_accents is not False:
|
||||
token = self._run_strip_accents(token)
|
||||
elif self.strip_accents:
|
||||
token = self._run_strip_accents(token)
|
||||
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
||||
|
||||
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
||||
return output_tokens
|
||||
|
||||
def _run_strip_accents(self, text):
|
||||
"""Strips accents from a piece of text."""
|
||||
text = unicodedata.normalize("NFD", text)
|
||||
output = []
|
||||
for char in text:
|
||||
cat = unicodedata.category(char)
|
||||
if cat == "Mn":
|
||||
continue
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
def _run_split_on_punc(self, text, never_split=None):
|
||||
"""Splits punctuation on a piece of text."""
|
||||
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
||||
return [text]
|
||||
chars = list(text)
|
||||
i = 0
|
||||
start_new_word = True
|
||||
output = []
|
||||
while i < len(chars):
|
||||
char = chars[i]
|
||||
if _is_punctuation(char):
|
||||
output.append([char])
|
||||
start_new_word = True
|
||||
else:
|
||||
if start_new_word:
|
||||
output.append([])
|
||||
start_new_word = False
|
||||
output[-1].append(char)
|
||||
i += 1
|
||||
|
||||
return ["".join(x) for x in output]
|
||||
|
||||
def _tokenize_chinese_chars(self, text):
|
||||
"""Adds whitespace around any CJK character."""
|
||||
output = []
|
||||
for char in text:
|
||||
cp = ord(char)
|
||||
if self._is_chinese_char(cp):
|
||||
output.append(" ")
|
||||
output.append(char)
|
||||
output.append(" ")
|
||||
else:
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
def _is_chinese_char(self, cp):
|
||||
"""Checks whether CP is the codepoint of a CJK character."""
|
||||
# This defines a "chinese character" as anything in the CJK Unicode block:
|
||||
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
||||
#
|
||||
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
||||
# despite its name. The modern Korean Hangul alphabet is a different block,
|
||||
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
||||
# space-separated words, so they are not treated specially and handled
|
||||
# like the all of the other languages.
|
||||
if (
|
||||
(cp >= 0x4E00 and cp <= 0x9FFF)
|
||||
or (cp >= 0x3400 and cp <= 0x4DBF)
|
||||
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
||||
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
||||
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
||||
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
||||
or (cp >= 0xF900 and cp <= 0xFAFF)
|
||||
or (cp >= 0x2F800 and cp <= 0x2FA1F)
|
||||
):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _clean_text(self, text):
|
||||
"""Performs invalid character removal and whitespace cleanup on text."""
|
||||
output = []
|
||||
for char in text:
|
||||
cp = ord(char)
|
||||
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
||||
continue
|
||||
if _is_whitespace(char):
|
||||
output.append(" ")
|
||||
else:
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
||||
class WordpieceTokenizer:
|
||||
"""Runs WordPiece tokenization."""
|
||||
|
||||
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
||||
self.vocab = vocab
|
||||
self.unk_token = unk_token
|
||||
self.max_input_chars_per_word = max_input_chars_per_word
|
||||
|
||||
def tokenize(self, text):
|
||||
"""
|
||||
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
||||
tokenization using the given vocabulary.
|
||||
|
||||
For example, `input = "unaffable"` will return as output `["un", "##aff", "##able"]`.
|
||||
|
||||
Args:
|
||||
text: A single token or whitespace separated tokens. This should have
|
||||
already been passed through *BasicTokenizer*.
|
||||
|
||||
Returns:
|
||||
A list of wordpiece tokens.
|
||||
"""
|
||||
|
||||
output_tokens = []
|
||||
for token in whitespace_tokenize(text):
|
||||
chars = list(token)
|
||||
if len(chars) > self.max_input_chars_per_word:
|
||||
output_tokens.append(self.unk_token)
|
||||
continue
|
||||
|
||||
is_bad = False
|
||||
start = 0
|
||||
sub_tokens = []
|
||||
while start < len(chars):
|
||||
end = len(chars)
|
||||
cur_substr = None
|
||||
while start < end:
|
||||
substr = "".join(chars[start:end])
|
||||
if start > 0:
|
||||
substr = "##" + substr
|
||||
if substr in self.vocab:
|
||||
cur_substr = substr
|
||||
break
|
||||
end -= 1
|
||||
if cur_substr is None:
|
||||
is_bad = True
|
||||
break
|
||||
sub_tokens.append(cur_substr)
|
||||
start = end
|
||||
|
||||
if is_bad:
|
||||
output_tokens.append(self.unk_token)
|
||||
else:
|
||||
output_tokens.extend(sub_tokens)
|
||||
return output_tokens
|
||||
|
||||
|
||||
def load_vocab(vocab_file):
|
||||
"""Loads a vocabulary file into a dictionary."""
|
||||
vocab = collections.OrderedDict()
|
||||
with open(vocab_file, "r", encoding="utf-8") as reader:
|
||||
tokens = reader.readlines()
|
||||
for index, token in enumerate(tokens):
|
||||
token = token.rstrip("\n")
|
||||
vocab[token] = index
|
||||
return vocab
|
||||
|
||||
|
||||
class ProphetNetTokenizer(PreTrainedTokenizer):
|
||||
r"""
|
||||
Construct a ProphetNetTokenizer. Based on WordPiece.
|
||||
|
||||
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
||||
this superclass for more information regarding those methods.
|
||||
|
||||
Args:
|
||||
vocab_file (`str`):
|
||||
File containing the vocabulary.
|
||||
do_lower_case (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to lowercase the input when tokenizing.
|
||||
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to do basic tokenization before WordPiece.
|
||||
never_split (`Iterable`, *optional*):
|
||||
Collection of tokens which will never be split during tokenization. Only has an effect when
|
||||
`do_basic_tokenize=True`
|
||||
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
||||
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
||||
sequence classification or for a text and a question for question answering. It is also used as the last
|
||||
token of a sequence built with special tokens.
|
||||
x_sep_token (`str`, *optional*, defaults to `"[X_SEP]"`):
|
||||
Special second separator token, which can be generated by [`ProphetNetForConditionalGeneration`]. It is
|
||||
used to separate bullet-point like sentences in summarization, *e.g.*.
|
||||
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
||||
The token used for padding, for example when batching sequences of different lengths.
|
||||
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
||||
The token used for masking values. This is the token used when training this model with masked language
|
||||
modeling. This is the token which the model will try to predict.
|
||||
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to tokenize Chinese characters.
|
||||
|
||||
This should likely be deactivated for Japanese (see this
|
||||
[issue](https://github.com/huggingface/transformers/issues/328)).
|
||||
strip_accents (`bool`, *optional*):
|
||||
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
||||
value for `lowercase` (as in the original BERT).
|
||||
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
||||
extra spaces.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
|
||||
# first name has to correspond to main model input name
|
||||
# to make sure `tokenizer.pad(...)` works correctly
|
||||
# `ProphetNet` doesn't have `token_type_ids` as argument.
|
||||
model_input_names: list[str] = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file: str,
|
||||
do_lower_case: Optional[bool] = True,
|
||||
do_basic_tokenize: Optional[bool] = True,
|
||||
never_split: Optional[Iterable] = None,
|
||||
unk_token: Optional[str] = "[UNK]",
|
||||
sep_token: Optional[str] = "[SEP]",
|
||||
x_sep_token: Optional[str] = "[X_SEP]",
|
||||
pad_token: Optional[str] = "[PAD]",
|
||||
mask_token: Optional[str] = "[MASK]",
|
||||
tokenize_chinese_chars: Optional[bool] = True,
|
||||
strip_accents: Optional[bool] = None,
|
||||
clean_up_tokenization_spaces: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if not os.path.isfile(vocab_file):
|
||||
raise ValueError(
|
||||
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
||||
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
||||
)
|
||||
self.vocab = load_vocab(vocab_file)
|
||||
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
||||
self.do_basic_tokenize = do_basic_tokenize
|
||||
if do_basic_tokenize:
|
||||
self.basic_tokenizer = BasicTokenizer(
|
||||
do_lower_case=do_lower_case,
|
||||
never_split=never_split,
|
||||
tokenize_chinese_chars=tokenize_chinese_chars,
|
||||
strip_accents=strip_accents,
|
||||
)
|
||||
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
||||
|
||||
super().__init__(
|
||||
do_lower_case=do_lower_case,
|
||||
do_basic_tokenize=do_basic_tokenize,
|
||||
never_split=never_split,
|
||||
unk_token=unk_token,
|
||||
sep_token=sep_token,
|
||||
x_sep_token=x_sep_token,
|
||||
pad_token=pad_token,
|
||||
mask_token=mask_token,
|
||||
tokenize_chinese_chars=tokenize_chinese_chars,
|
||||
strip_accents=strip_accents,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return len(self.vocab)
|
||||
|
||||
def get_vocab(self):
|
||||
return dict(self.vocab, **self.added_tokens_encoder)
|
||||
|
||||
def _tokenize(self, text):
|
||||
split_tokens = []
|
||||
if self.do_basic_tokenize:
|
||||
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
||||
# If the token is part of the never_split set
|
||||
if token in self.basic_tokenizer.never_split:
|
||||
split_tokens.append(token)
|
||||
else:
|
||||
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
||||
else:
|
||||
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
||||
return split_tokens
|
||||
|
||||
def _convert_token_to_id(self, token: str):
|
||||
"""Converts a token (str) in an id using the vocab."""
|
||||
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
||||
|
||||
def _convert_id_to_token(self, index: int):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
return self.ids_to_tokens.get(index, self.unk_token)
|
||||
|
||||
def convert_tokens_to_string(self, tokens: str):
|
||||
"""Converts a sequence of tokens (string) in a single string."""
|
||||
out_string = " ".join(tokens).replace(" ##", "").strip()
|
||||
return out_string
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self,
|
||||
token_ids_0: list[int],
|
||||
token_ids_1: Optional[list[int]] = None,
|
||||
already_has_special_tokens: Optional[bool] = False,
|
||||
) -> list[int]:
|
||||
"""
|
||||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer `prepare_for_model` method.
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||||
)
|
||||
|
||||
if token_ids_1 is None:
|
||||
return ([0] * len(token_ids_0)) + [1]
|
||||
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]:
|
||||
index = 0
|
||||
if os.path.isdir(save_directory):
|
||||
vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
else:
|
||||
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
||||
with open(vocab_file, "w", encoding="utf-8") as writer:
|
||||
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
||||
if index != token_index:
|
||||
logger.warning(
|
||||
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
||||
" Please check that the vocabulary is not corrupted!"
|
||||
)
|
||||
index = token_index
|
||||
writer.write(token + "\n")
|
||||
index += 1
|
||||
return (vocab_file,)
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
|
||||
) -> list[int]:
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||
adding special tokens. A BERT sequence has the following format:
|
||||
|
||||
- single sequence: `[CLS] X [SEP]`
|
||||
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs to which the special tokens will be added.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
||||
"""
|
||||
if token_ids_1 is None:
|
||||
return token_ids_0 + [self.sep_token_id]
|
||||
sep = [self.sep_token_id]
|
||||
return token_ids_0 + sep + token_ids_1 + sep
|
||||
|
||||
|
||||
__all__ = ["ProphetNetTokenizer"]
|
Loading…
Add table
Add a link
Reference in a new issue