# app.py from PIL import Image import streamlit as st from llama_cpp import Llama from image_generation import generate_image st.set_page_config(page_title="GreenThumber", layout="centered") st.title("🌱 GreenThumber") @st.cache_resource(hash_funcs={Llama: lambda _: None}) def load_mistral_model(): llm = Llama( model_path="./models/mistral-7b-instruct-v0.1.Q4_K_M.gguf", n_ctx=2048, n_threads=4, n_batch=512, verbose=False ) return llm llm = load_mistral_model() def generate_growth_description(plant_type, plant_age, soil_type, sunlight_hours, water_frequency, fertilizer_type, temperature, humidity, days, additional_info): prompt = ( f" Instruction:\n" f"You are a botanical expert. Describe how a {plant_type} plant will likely look in {days} days " f"based on these conditions:\n" f"Important environment conditions: {additional_info}\n" f"- Plant age: {plant_age} days\n" f"- Soil Type: {soil_type}\n" f"- Sunlight: {sunlight_hours} hours per day\n" f"- Water Frequency: {water_frequency} times per week\n" f"- Fertilizer Type: {fertilizer_type}\n" f"- Temperature: {temperature}°C\n" f"- Humidity: {humidity}%\n" f"### Response:\n" ) output = llm(prompt, max_tokens=100, stop=["###"]) return output["choices"][0]["text"].strip() st.header("Plant Info") plant_input_mode = st.radio("How would you like to provide plant info?", ("Type name", "Upload image")) plant_type = None uploaded_image = None if plant_input_mode == "Type name": plant_type = st.selectbox("Select Plant Type", ["Basil", "Tomato", "Lettuce"]) plant_age = st.number_input("Enter Plant Age (in days)", min_value=1, max_value=365, value=25) elif plant_input_mode == "Upload image": plant_type = st.selectbox("Select Plant Type", ["Basil", "Tomato", "Lettuce"]) plant_age = st.number_input("Enter Plant Age (in days)", min_value=1, max_value=365, value=25) image_file = st.file_uploader("Upload an image of your plant", type=["jpg", "jpeg", "png"]) if image_file: uploaded_image = Image.open(image_file) st.image(uploaded_image, caption="Uploaded Plant Image", use_container_width =True) col1, col2 = st.columns(2) with col1: st.markdown("

Environmental Parameters

", unsafe_allow_html=True) soil_options = ["Sandy", "Clay", "Loamy", "Peaty", "Chalky", "Silty"] soil_type = st.selectbox("Soil Type", soil_options) sunlight_hours = st.slider("Sunlight Hours per day", 0, 24, 6) water_frequency = st.slider("Water Frequency (times per week)", 0, 14, 3) with col2: st.markdown("---") fertilizer_options = ["Organic", "Chemical", "None"] fertilizer_type = st.selectbox("Fertilizer Type", fertilizer_options) temperature = st.slider("Temperature (°C)", -10, 50, 22) humidity = st.slider("Humidity (%)", 0, 100, 60) days = st.slider("Prediction Interval (in days)", min_value=1, max_value=30, value=7) additional_info = st.text_area("Feel free to include any additional detail", height=100) if st.button("Start Prediction"): # Comment out this line to enable automatic refresh on input change if plant_type and plant_type.strip() != "": with st.spinner("Analyzing data and generating description..."): description = generate_growth_description( plant_type, plant_age, soil_type, sunlight_hours, water_frequency, fertilizer_type, temperature, humidity, days, additional_info ) st.subheader(f"📝 Predicted Plant Condition in {days} Days:") st.write(description) manipulated_img = generate_image(plant_type, description, plant_age) st.image(manipulated_img, caption="Predicted Plant Condition Image") st.markdown("---") st.caption("Made with ❤️ by Sandwich Craftz.")