import base64 from typing import Any, Dict, Optional, Union from huggingface_hub.hf_api import InferenceProviderMapping from huggingface_hub.inference._common import RequestParameters, _as_dict from ._common import BaseConversationalTask, TaskProviderHelper, filter_none class NscaleConversationalTask(BaseConversationalTask): def __init__(self): super().__init__(provider="nscale", base_url="https://inference.api.nscale.com") class NscaleTextToImageTask(TaskProviderHelper): def __init__(self): super().__init__(provider="nscale", base_url="https://inference.api.nscale.com", task="text-to-image") def _prepare_route(self, mapped_model: str, api_key: str) -> str: return "/v1/images/generations" def _prepare_payload_as_dict( self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping ) -> Optional[Dict]: mapped_model = provider_mapping_info.provider_id # Combine all parameters except inputs and parameters parameters = filter_none(parameters) if "width" in parameters and "height" in parameters: parameters["size"] = f"{parameters.pop('width')}x{parameters.pop('height')}" if "num_inference_steps" in parameters: parameters.pop("num_inference_steps") if "cfg_scale" in parameters: parameters.pop("cfg_scale") payload = { "response_format": "b64_json", "prompt": inputs, "model": mapped_model, **parameters, } return payload def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: response_dict = _as_dict(response) return base64.b64decode(response_dict["data"][0]["b64_json"])