"""Hessian update strategies for quasi-Newton optimization methods.""" import numpy as np from numpy.linalg import norm from scipy.linalg import get_blas_funcs, issymmetric from warnings import warn __all__ = ['HessianUpdateStrategy', 'BFGS', 'SR1'] class HessianUpdateStrategy: """Interface for implementing Hessian update strategies. Many optimization methods make use of Hessian (or inverse Hessian) approximations, such as the quasi-Newton methods BFGS, SR1, L-BFGS. Some of these approximations, however, do not actually need to store the entire matrix or can compute the internal matrix product with a given vector in a very efficiently manner. This class serves as an abstract interface between the optimization algorithm and the quasi-Newton update strategies, giving freedom of implementation to store and update the internal matrix as efficiently as possible. Different choices of initialization and update procedure will result in different quasi-Newton strategies. Four methods should be implemented in derived classes: ``initialize``, ``update``, ``dot`` and ``get_matrix``. The matrix multiplication operator ``@`` is also defined to call the ``dot`` method. Notes ----- Any instance of a class that implements this interface, can be accepted by the method ``minimize`` and used by the compatible solvers to approximate the Hessian (or inverse Hessian) used by the optimization algorithms. """ def initialize(self, n, approx_type): """Initialize internal matrix. Allocate internal memory for storing and updating the Hessian or its inverse. Parameters ---------- n : int Problem dimension. approx_type : {'hess', 'inv_hess'} Selects either the Hessian or the inverse Hessian. When set to 'hess' the Hessian will be stored and updated. When set to 'inv_hess' its inverse will be used instead. """ raise NotImplementedError("The method ``initialize(n, approx_type)``" " is not implemented.") def update(self, delta_x, delta_grad): """Update internal matrix. Update Hessian matrix or its inverse (depending on how 'approx_type' is defined) using information about the last evaluated points. Parameters ---------- delta_x : ndarray The difference between two points the gradient function have been evaluated at: ``delta_x = x2 - x1``. delta_grad : ndarray The difference between the gradients: ``delta_grad = grad(x2) - grad(x1)``. """ raise NotImplementedError("The method ``update(delta_x, delta_grad)``" " is not implemented.") def dot(self, p): """Compute the product of the internal matrix with the given vector. Parameters ---------- p : array_like 1-D array representing a vector. Returns ------- Hp : array 1-D represents the result of multiplying the approximation matrix by vector p. """ raise NotImplementedError("The method ``dot(p)``" " is not implemented.") def get_matrix(self): """Return current internal matrix. Returns ------- H : ndarray, shape (n, n) Dense matrix containing either the Hessian or its inverse (depending on how 'approx_type' is defined). """ raise NotImplementedError("The method ``get_matrix(p)``" " is not implemented.") def __matmul__(self, p): return self.dot(p) class FullHessianUpdateStrategy(HessianUpdateStrategy): """Hessian update strategy with full dimensional internal representation. """ _syr = get_blas_funcs('syr', dtype='d') # Symmetric rank 1 update _syr2 = get_blas_funcs('syr2', dtype='d') # Symmetric rank 2 update # Symmetric matrix-vector product _symv = get_blas_funcs('symv', dtype='d') def __init__(self, init_scale='auto'): self.init_scale = init_scale # Until initialize is called we can't really use the class, # so it makes sense to set everything to None. self.first_iteration = None self.approx_type = None self.B = None self.H = None def initialize(self, n, approx_type): """Initialize internal matrix. Allocate internal memory for storing and updating the Hessian or its inverse. Parameters ---------- n : int Problem dimension. approx_type : {'hess', 'inv_hess'} Selects either the Hessian or the inverse Hessian. When set to 'hess' the Hessian will be stored and updated. When set to 'inv_hess' its inverse will be used instead. """ self.first_iteration = True self.n = n self.approx_type = approx_type if approx_type not in ('hess', 'inv_hess'): raise ValueError("`approx_type` must be 'hess' or 'inv_hess'.") # Create matrix if self.approx_type == 'hess': self.B = np.eye(n, dtype=float) else: self.H = np.eye(n, dtype=float) def _auto_scale(self, delta_x, delta_grad): # Heuristic to scale matrix at first iteration. # Described in Nocedal and Wright "Numerical Optimization" # p.143 formula (6.20). s_norm2 = np.dot(delta_x, delta_x) y_norm2 = np.dot(delta_grad, delta_grad) ys = np.abs(np.dot(delta_grad, delta_x)) if ys == 0.0 or y_norm2 == 0 or s_norm2 == 0: return 1 if self.approx_type == 'hess': return y_norm2 / ys else: return ys / y_norm2 def _update_implementation(self, delta_x, delta_grad): raise NotImplementedError("The method ``_update_implementation``" " is not implemented.") def update(self, delta_x, delta_grad): """Update internal matrix. Update Hessian matrix or its inverse (depending on how 'approx_type' is defined) using information about the last evaluated points. Parameters ---------- delta_x : ndarray The difference between two points the gradient function have been evaluated at: ``delta_x = x2 - x1``. delta_grad : ndarray The difference between the gradients: ``delta_grad = grad(x2) - grad(x1)``. """ if np.all(delta_x == 0.0): return if np.all(delta_grad == 0.0): warn('delta_grad == 0.0. Check if the approximated ' 'function is linear. If the function is linear ' 'better results can be obtained by defining the ' 'Hessian as zero instead of using quasi-Newton ' 'approximations.', UserWarning, stacklevel=2) return if self.first_iteration: # Get user specific scale if isinstance(self.init_scale, str) and self.init_scale == "auto": scale = self._auto_scale(delta_x, delta_grad) else: scale = self.init_scale # Check for complex: numpy will silently cast a complex array to # a real one but not so for scalar as it raises a TypeError. # Checking here brings a consistent behavior. replace = False if np.size(scale) == 1: # to account for the legacy behavior having the exact same cast scale = float(scale) elif np.iscomplexobj(scale): raise TypeError("init_scale contains complex elements, " "must be real.") else: # test explicitly for allowed shapes and values replace = True if self.approx_type == 'hess': shape = np.shape(self.B) dtype = self.B.dtype else: shape = np.shape(self.H) dtype = self.H.dtype # copy, will replace the original scale = np.array(scale, dtype=dtype, copy=True) # it has to match the shape of the matrix for the multiplication, # no implicit broadcasting is allowed if shape != (init_shape := np.shape(scale)): raise ValueError("If init_scale is an array, it must have the " f"dimensions of the hess/inv_hess: {shape}." f" Got {init_shape}.") if not issymmetric(scale): raise ValueError("If init_scale is an array, it must be" " symmetric (passing scipy.linalg.issymmetric)" " to be an approximation of a hess/inv_hess.") # Scale initial matrix with ``scale * np.eye(n)`` or replace # This is not ideal, we could assign the scale directly in # initialize, but we would need to if self.approx_type == 'hess': if replace: self.B = scale else: self.B *= scale else: if replace: self.H = scale else: self.H *= scale self.first_iteration = False self._update_implementation(delta_x, delta_grad) def dot(self, p): """Compute the product of the internal matrix with the given vector. Parameters ---------- p : array_like 1-D array representing a vector. Returns ------- Hp : array 1-D represents the result of multiplying the approximation matrix by vector p. """ if self.approx_type == 'hess': return self._symv(1, self.B, p) else: return self._symv(1, self.H, p) def get_matrix(self): """Return the current internal matrix. Returns ------- M : ndarray, shape (n, n) Dense matrix containing either the Hessian or its inverse (depending on how `approx_type` was defined). """ if self.approx_type == 'hess': M = np.copy(self.B) else: M = np.copy(self.H) li = np.tril_indices_from(M, k=-1) M[li] = M.T[li] return M class BFGS(FullHessianUpdateStrategy): """Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy. Parameters ---------- exception_strategy : {'skip_update', 'damp_update'}, optional Define how to proceed when the curvature condition is violated. Set it to 'skip_update' to just skip the update. Or, alternatively, set it to 'damp_update' to interpolate between the actual BFGS result and the unmodified matrix. Both exceptions strategies are explained in [1]_, p.536-537. min_curvature : float This number, scaled by a normalization factor, defines the minimum curvature ``dot(delta_grad, delta_x)`` allowed to go unaffected by the exception strategy. By default is equal to 1e-8 when ``exception_strategy = 'skip_update'`` and equal to 0.2 when ``exception_strategy = 'damp_update'``. init_scale : {float, np.array, 'auto'} This parameter can be used to initialize the Hessian or its inverse. When a float is given, the relevant array is initialized to ``np.eye(n) * init_scale``, where ``n`` is the problem dimension. Alternatively, if a precisely ``(n, n)`` shaped, symmetric array is given, this array will be used. Otherwise an error is generated. Set it to 'auto' in order to use an automatic heuristic for choosing the initial scale. The heuristic is described in [1]_, p.143. The default is 'auto'. Notes ----- The update is based on the description in [1]_, p.140. References ---------- .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" Second Edition (2006). """ def __init__(self, exception_strategy='skip_update', min_curvature=None, init_scale='auto'): if exception_strategy == 'skip_update': if min_curvature is not None: self.min_curvature = min_curvature else: self.min_curvature = 1e-8 elif exception_strategy == 'damp_update': if min_curvature is not None: self.min_curvature = min_curvature else: self.min_curvature = 0.2 else: raise ValueError("`exception_strategy` must be 'skip_update' " "or 'damp_update'.") super().__init__(init_scale) self.exception_strategy = exception_strategy def _update_inverse_hessian(self, ys, Hy, yHy, s): """Update the inverse Hessian matrix. BFGS update using the formula: ``H <- H + ((H*y).T*y + s.T*y)/(s.T*y)^2 * (s*s.T) - 1/(s.T*y) * ((H*y)*s.T + s*(H*y).T)`` where ``s = delta_x`` and ``y = delta_grad``. This formula is equivalent to (6.17) in [1]_ written in a more efficient way for implementation. References ---------- .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" Second Edition (2006). """ self.H = self._syr2(-1.0 / ys, s, Hy, a=self.H) self.H = self._syr((ys + yHy) / ys ** 2, s, a=self.H) def _update_hessian(self, ys, Bs, sBs, y): """Update the Hessian matrix. BFGS update using the formula: ``B <- B - (B*s)*(B*s).T/s.T*(B*s) + y*y^T/s.T*y`` where ``s`` is short for ``delta_x`` and ``y`` is short for ``delta_grad``. Formula (6.19) in [1]_. References ---------- .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" Second Edition (2006). """ self.B = self._syr(1.0 / ys, y, a=self.B) self.B = self._syr(-1.0 / sBs, Bs, a=self.B) def _update_implementation(self, delta_x, delta_grad): # Auxiliary variables w and z if self.approx_type == 'hess': w = delta_x z = delta_grad else: w = delta_grad z = delta_x # Do some common operations wz = np.dot(w, z) Mw = self @ w wMw = Mw.dot(w) # Guarantee that wMw > 0 by reinitializing matrix. # While this is always true in exact arithmetic, # indefinite matrix may appear due to roundoff errors. if wMw <= 0.0: scale = self._auto_scale(delta_x, delta_grad) # Reinitialize matrix if self.approx_type == 'hess': self.B = scale * np.eye(self.n, dtype=float) else: self.H = scale * np.eye(self.n, dtype=float) # Do common operations for new matrix Mw = self @ w wMw = Mw.dot(w) # Check if curvature condition is violated if wz <= self.min_curvature * wMw: # If the option 'skip_update' is set # we just skip the update when the condition # is violated. if self.exception_strategy == 'skip_update': return # If the option 'damp_update' is set we # interpolate between the actual BFGS # result and the unmodified matrix. elif self.exception_strategy == 'damp_update': update_factor = (1-self.min_curvature) / (1 - wz/wMw) z = update_factor*z + (1-update_factor)*Mw wz = np.dot(w, z) # Update matrix if self.approx_type == 'hess': self._update_hessian(wz, Mw, wMw, z) else: self._update_inverse_hessian(wz, Mw, wMw, z) class SR1(FullHessianUpdateStrategy): """Symmetric-rank-1 Hessian update strategy. Parameters ---------- min_denominator : float This number, scaled by a normalization factor, defines the minimum denominator magnitude allowed in the update. When the condition is violated we skip the update. By default uses ``1e-8``. init_scale : {float, np.array, 'auto'}, optional This parameter can be used to initialize the Hessian or its inverse. When a float is given, the relevant array is initialized to ``np.eye(n) * init_scale``, where ``n`` is the problem dimension. Alternatively, if a precisely ``(n, n)`` shaped, symmetric array is given, this array will be used. Otherwise an error is generated. Set it to 'auto' in order to use an automatic heuristic for choosing the initial scale. The heuristic is described in [1]_, p.143. The default is 'auto'. Notes ----- The update is based on the description in [1]_, p.144-146. References ---------- .. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" Second Edition (2006). """ def __init__(self, min_denominator=1e-8, init_scale='auto'): self.min_denominator = min_denominator super().__init__(init_scale) def _update_implementation(self, delta_x, delta_grad): # Auxiliary variables w and z if self.approx_type == 'hess': w = delta_x z = delta_grad else: w = delta_grad z = delta_x # Do some common operations Mw = self @ w z_minus_Mw = z - Mw denominator = np.dot(w, z_minus_Mw) # If the denominator is too small # we just skip the update. if np.abs(denominator) <= self.min_denominator*norm(w)*norm(z_minus_Mw): return # Update matrix if self.approx_type == 'hess': self.B = self._syr(1/denominator, z_minus_Mw, a=self.B) else: self.H = self._syr(1/denominator, z_minus_Mw, a=self.H)