# mypy: allow-untyped-defs """ Device abstraction layer for TorchDynamo and Inductor backends. This module provides a unified interface for different hardware backends (CUDA, XPU, CPU, MPS) through a common device interface. Key components include: - DeviceInterface: Base class defining the common API for all device types - Device-specific implementations: CudaInterface, XpuInterface, CpuInterface, MpsInterface - Device registration system for managing available backends - Worker APIs for multi-processing scenarios - Stream and event management across different devices - Device property caching for worker processes The abstraction layer enables device-agnostic code in TorchDynamo while allowing specialized implementations for each hardware backend's unique features. """ import time from collections.abc import Iterable from dataclasses import dataclass from typing import Any, Callable, Optional, Union import torch get_cuda_stream: Optional[Callable[[int], int]] if torch.cuda._is_compiled(): from torch._C import _cuda_getCurrentRawStream as get_cuda_stream else: get_cuda_stream = None _device_t = Union[torch.device, str, int, None] # Recording the device properties in the main process but used in worker process. caching_worker_device_properties: dict[str, Any] = {} caching_worker_current_devices: dict[str, int] = {} class DeviceInterface: """ This is a simple device runtime interface for Inductor. It enables custom backends to be integrated with Inductor in a device-agnostic semantic. """ class device: def __new__(cls, device: _device_t): raise NotImplementedError class Event: def __new__(cls, *args, **kwargs): raise NotImplementedError( "Event should be inherited from torch.Event, otherwise, it couldn't be captured by dynamo." ) class Stream: def __new__(cls, *args, **kwargs): raise NotImplementedError( "Stream should be inherited from torch.Stream, otherwise, it couldn't be captured by dynamo." ) class Worker: """ Worker API to query device properties that will work in multi processing workers that cannot use the GPU APIs (due to processing fork() and initialization time issues). Properties are recorded in the main process before we fork the workers. """ @staticmethod def set_device(device: int): raise NotImplementedError @staticmethod def current_device() -> int: raise NotImplementedError @staticmethod def get_device_properties(device: _device_t = None): raise NotImplementedError @staticmethod def current_device(): raise NotImplementedError @staticmethod def set_device(device: _device_t): raise NotImplementedError @staticmethod def maybe_exchange_device(device: int) -> int: raise NotImplementedError @staticmethod def exchange_device(device: int) -> int: raise NotImplementedError @staticmethod def device_count(): raise NotImplementedError @staticmethod def is_available() -> bool: raise NotImplementedError @staticmethod def stream(stream: torch.Stream): raise NotImplementedError @staticmethod def current_stream(): raise NotImplementedError @staticmethod def set_stream(stream: torch.Stream): raise NotImplementedError @staticmethod def _set_stream_by_id(stream_id: int, device_index: int, device_type: int): raise NotImplementedError @staticmethod def get_raw_stream(device_idx: int) -> int: raise NotImplementedError @staticmethod def synchronize(device: _device_t = None): raise NotImplementedError @classmethod def get_device_properties(cls, device: _device_t = None): return cls.Worker.get_device_properties(device) @staticmethod def get_compute_capability(device: _device_t = None): raise NotImplementedError @staticmethod def is_bf16_supported(including_emulation: bool = False): raise NotImplementedError @classmethod def is_dtype_supported( cls, dtype: torch.dtype, including_emulation: bool = False ) -> bool: return dtype != torch.bfloat16 or cls.is_bf16_supported(including_emulation) @staticmethod def memory_allocated(device: _device_t = None) -> int: raise NotImplementedError class DeviceGuard: """ This class provides a context manager for device switching. This is a stripped down version of torch.{device_name}.device. The context manager changes the current device to the given device index on entering the context and restores the original device on exiting. The device is switched using the provided device interface. """ def __init__( self, device_interface: type[DeviceInterface], index: Optional[int] ) -> None: self.device_interface = device_interface self.idx = index self.prev_idx = -1 def __enter__(self): if self.idx is not None: self.prev_idx = self.device_interface.exchange_device(self.idx) def __exit__(self, type: Any, value: Any, traceback: Any): if self.idx is not None: self.idx = self.device_interface.maybe_exchange_device(self.prev_idx) return False class CudaInterface(DeviceInterface): device = torch.cuda.device # register Event and Stream class into the backend interface # make sure Event and Stream are implemented and inherited from the torch.Event and torch.Stream Event = torch.cuda.Event Stream = torch.cuda.Stream class Worker: @staticmethod def set_device(device: int): caching_worker_current_devices["cuda"] = device @staticmethod def current_device() -> int: if "cuda" in caching_worker_current_devices: return caching_worker_current_devices["cuda"] return torch.cuda.current_device() @staticmethod def get_device_properties(device: _device_t = None): if device is not None: if isinstance(device, str): device = torch.device(device) assert device.type == "cuda" if isinstance(device, torch.device): device = device.index if device is None: device = CudaInterface.Worker.current_device() if "cuda" not in caching_worker_device_properties: device_prop = [ torch.cuda.get_device_properties(i) for i in range(torch.cuda.device_count()) ] caching_worker_device_properties["cuda"] = device_prop return caching_worker_device_properties["cuda"][device] current_device = staticmethod(torch.cuda.current_device) set_device = staticmethod(torch.cuda.set_device) device_count = staticmethod(torch.cuda.device_count) stream = staticmethod(torch.cuda.stream) # type: ignore[assignment] current_stream = staticmethod(torch.cuda.current_stream) set_stream = staticmethod(torch.cuda.set_stream) # type: ignore[assignment] _set_stream_by_id = staticmethod(torch.cuda._set_stream_by_id) # type: ignore[assignment] synchronize = staticmethod(torch.cuda.synchronize) get_device_properties = staticmethod(torch.cuda.get_device_properties) # type: ignore[assignment] get_raw_stream = staticmethod(get_cuda_stream) # type: ignore[assignment, arg-type] exchange_device = staticmethod(torch.cuda._exchange_device) # type: ignore[arg-type] maybe_exchange_device = staticmethod(torch.cuda._maybe_exchange_device) # type: ignore[arg-type] memory_allocated = staticmethod(torch.cuda.memory_allocated) is_bf16_supported = staticmethod(torch.cuda.is_bf16_supported) # type: ignore[arg-type] # Can be mock patched by @patch decorator. @staticmethod def is_available() -> bool: return torch.cuda.is_available() @staticmethod def get_compute_capability(device: _device_t = None): if torch.version.hip is None: major, min = torch.cuda.get_device_capability(device) return major * 10 + min else: return torch.cuda.get_device_properties(device).gcnArchName.split(":", 1)[0] get_xpu_stream: Optional[Callable[[int], int]] if torch.xpu._is_compiled(): from torch._C import _xpu_getCurrentRawStream as get_xpu_stream else: get_xpu_stream = None class XpuInterface(DeviceInterface): device = torch.xpu.device Event = torch.xpu.Event Stream = torch.xpu.Stream class Worker: @staticmethod def set_device(device: int): caching_worker_current_devices["xpu"] = device @staticmethod def current_device() -> int: if "xpu" in caching_worker_current_devices: return caching_worker_current_devices["xpu"] return torch.xpu.current_device() @staticmethod def get_device_properties(device: _device_t = None): if device is not None: if isinstance(device, str): device = torch.device(device) assert device.type == "xpu" if isinstance(device, torch.device): device = device.index if device is None: device = XpuInterface.Worker.current_device() if "xpu" not in caching_worker_device_properties: device_prop = [ torch.xpu.get_device_properties(i) for i in range(torch.xpu.device_count()) ] caching_worker_device_properties["xpu"] = device_prop return caching_worker_device_properties["xpu"][device] current_device = staticmethod(torch.xpu.current_device) set_device = staticmethod(torch.xpu.set_device) device_count = staticmethod(torch.xpu.device_count) stream = staticmethod(torch.xpu.stream) # type: ignore[assignment] current_stream = staticmethod(torch.xpu.current_stream) set_stream = staticmethod(torch.xpu.set_stream) # type: ignore[assignment] _set_stream_by_id = staticmethod(torch.xpu._set_stream_by_id) # type: ignore[assignment] synchronize = staticmethod(torch.xpu.synchronize) get_device_properties = staticmethod(torch.xpu.get_device_properties) # type: ignore[assignment] get_raw_stream = staticmethod(get_xpu_stream) # type: ignore[assignment, arg-type] exchange_device = staticmethod(torch.xpu._exchange_device) # type: ignore[arg-type] maybe_exchange_device = staticmethod(torch.xpu._maybe_exchange_device) # type: ignore[arg-type] memory_allocated = staticmethod(torch.xpu.memory_allocated) # Can be mock patched by @patch decorator. @staticmethod def is_available() -> bool: return torch.xpu.is_available() @staticmethod def get_compute_capability(device: _device_t = None): cc = torch.xpu.get_device_capability(device) return cc @staticmethod def is_bf16_supported(including_emulation: bool = False) -> bool: return torch.xpu.is_bf16_supported() @dataclass class CpuDeviceProperties: multi_processor_count: int class CpuInterface(DeviceInterface): class Event(torch.Event): def __init__(self, enable_timing=True): self.time = 0.0 def elapsed_time(self, end_event) -> float: return (end_event.time - self.time) * 1000 def record(self, stream=None): self.time = time.perf_counter() @staticmethod def is_available() -> bool: return True @staticmethod def is_bf16_supported(including_emulation: bool = False): return True @staticmethod def get_compute_capability(device: _device_t = None) -> str: return "" @staticmethod def get_raw_stream(device_idx) -> int: return 0 @staticmethod def current_device(): return 0 @staticmethod def synchronize(device: _device_t = None): pass class Worker: @staticmethod def get_device_properties(device: _device_t = None): import multiprocessing cpu_count = multiprocessing.cpu_count() return CpuDeviceProperties(cpu_count) class MpsInterface(DeviceInterface): @staticmethod def is_bf16_supported(including_emulation: bool = False) -> bool: return torch.backends.mps.is_macos_or_newer(14, 0) @classmethod def is_dtype_supported( cls, dtype: torch.dtype, including_emulation: bool = False ) -> bool: if dtype == torch.float64: return False return dtype != torch.bfloat16 or cls.is_bf16_supported(including_emulation) @staticmethod def is_available() -> bool: return torch.backends.mps.is_available() @staticmethod def current_device(): return 0 @staticmethod def get_compute_capability(device: _device_t = None) -> str: return "" @staticmethod def synchronize(device: _device_t = None): torch.mps.synchronize() class Worker: @staticmethod def get_device_properties(device: _device_t = None): return {} @staticmethod def current_device(): return 0 device_interfaces: dict[str, type[DeviceInterface]] = {} _device_initialized = False def register_interface_for_device( device: Union[str, torch.device], device_interface: type[DeviceInterface] ): if isinstance(device, torch.device): device = device.type device_interfaces[device] = device_interface def get_interface_for_device(device: Union[str, torch.device]) -> type[DeviceInterface]: if isinstance(device, torch.device): device = device.type if not _device_initialized: init_device_reg() if device in device_interfaces: return device_interfaces[device] raise NotImplementedError(f"No interface for device {device}") def get_registered_device_interfaces() -> Iterable[tuple[str, type[DeviceInterface]]]: if not _device_initialized: init_device_reg() return device_interfaces.items() def init_device_reg(): global _device_initialized register_interface_for_device("cuda", CudaInterface) for i in range(torch.cuda.device_count()): register_interface_for_device(f"cuda:{i}", CudaInterface) register_interface_for_device("xpu", XpuInterface) for i in range(torch.xpu.device_count()): register_interface_for_device(f"xpu:{i}", XpuInterface) register_interface_for_device("cpu", CpuInterface) register_interface_for_device("mps", MpsInterface) _device_initialized = True