import collections import contextlib import copy import dataclasses import functools import io import itertools import json import logging import os import os.path import pickle import pstats import shutil import subprocess import traceback from collections.abc import Iterator from typing import Any, Callable, IO, Optional, Union from unittest.mock import patch import torch from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled from torch import fx as fx from torch._dynamo.repro.after_aot import save_graph_repro from torch._dynamo.utils import get_debug_dir from torch._logging import getArtifactLogger from torch.fx.graph_module import GraphModule from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata from torch.fx.passes.tools_common import legalize_graph from torch.types import FileLike from torch.utils._ordered_set import OrderedSet from torch.utils._pytree import tree_map from . import config, ir # noqa: F811, this is needed from .scheduler import ( BaseSchedulerNode, FusedSchedulerNode, NopKernelSchedulerNode, OutputNode, SchedulerNode, ) from .virtualized import V log = logging.getLogger(__name__) ir_pre_fusion_log = getArtifactLogger(__name__, "ir_pre_fusion") ir_post_fusion_log = getArtifactLogger(__name__, "ir_post_fusion") SchedulerNodeList = list[Any] BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"]) GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"] @functools.lru_cache(None) def has_dot() -> bool: try: subprocess.check_output(["which", "dot"], stderr=subprocess.PIPE) return True except subprocess.SubprocessError: return False def draw_buffers( nodes: list[BaseSchedulerNode], print_graph: bool = False, fname: Optional[str] = None, ) -> None: """ Draw a graph in fname.svg. """ if not has_dot(): log.warning("draw_buffers() requires `graphviz` package") return if fname is None: fname = get_graph_being_compiled() graph = create_fx_from_snodes(nodes) for node in graph.nodes: if "fusion_meta" not in node.meta: continue group = node.meta["fusion_meta"].group if isinstance(group, tuple): if isinstance(group[1], int): group = (group[1],) else: group = group[1] # gather meta data dtype = None if isinstance(node, ir.ComputedBuffer): dtype = node.data.dtype metadata = TensorMetadata(group, dtype, None, None, None, None, None) # type: ignore[arg-type] node.meta["tensor_meta"] = metadata if print_graph: print(graph) gm = GraphModule({}, graph) legalize_graph(gm) gm.graph.lint() draw_graph( gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape ) def create_fx_from_snodes(snodes: list[BaseSchedulerNode]) -> fx.Graph: """ Creates a FX Graph from a list of SchedulerNode objects. """ def get_fake_func(name: str) -> Callable[..., int]: def func1(*args: Any) -> int: return 0 func1.__name__ = name return func1 FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"]) buf_to_fx_node = {} node_to_fx_node = {} graph = torch.fx.Graph() first_node = None outputs = [] group: Any = None # create call_function node for each Buffer and Kernel for snode in snodes: if snode.is_extern(): node_type = "extern" group = node_type elif snode.is_template(): node_type = "template" group = node_type elif isinstance(snode, NopKernelSchedulerNode): node_type = "nop" group = node_type elif isinstance(snode, SchedulerNode): node_type = "compute" group = snode.group elif isinstance(snode, FusedSchedulerNode): node_type = "fused" group = snode.group else: raise RuntimeError("Unknown node type") fused_name = torch._inductor.utils.get_fused_kernel_name( snode.get_nodes(), "original_aten" ) func_name = f"{node_type}: {fused_name}" node_func = get_fake_func(func_name) kwargs = {} if hasattr(snode, "get_device"): kwargs = {"device": snode.get_device()} fx_node = graph.call_function(node_func, args=(), kwargs=kwargs) # type: ignore[arg-type] def in_output(snode: Union[BaseSchedulerNode, FusedSchedulerNode]) -> bool: if isinstance(snode, FusedSchedulerNode): return any(in_output(x) for x in snode.snodes) return any( isinstance(user.node, OutputNode) for buf in snode.get_outputs() for user in buf.users ) if in_output(snode): outputs.append(fx_node) name = snode.get_name() fx_node.name = name fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type) node_to_fx_node[name] = fx_node for buf in snode.get_outputs(): buf_to_fx_node[buf.get_name()] = fx_node if first_node is None: first_node = fx_node # create edges between nodes for snode in snodes: name = snode.get_name() deps = snode.read_writes.reads fx_node = node_to_fx_node[name] new_args = [] for dep in deps: if dep.name in buf_to_fx_node: dep_node = buf_to_fx_node[dep.name] else: with graph.inserting_before(first_node): dep_node = graph.placeholder(dep.name) buf_to_fx_node[dep.name] = dep_node if dep_node == fx_node: # to avoid cycles continue new_args.append(dep_node) fx_node.args = tuple(new_args) graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs)) return graph def update_orig_fx_node_name_to_buf_name( nodes: Optional[SchedulerNodeList], node_name_to_buf_name: dict[str, str], parent_buf_name: Optional[str] = None, n_origins: int = 0, ) -> None: if nodes is None: return for node in nodes: # for FusedSchedulerNode, traverse recursively into get_nodes() buf_name = node.get_name() children_nodes = node.get_nodes() if children_nodes is not None and len(children_nodes) > 1: update_orig_fx_node_name_to_buf_name( children_nodes, node_name_to_buf_name, buf_name if parent_buf_name is None else parent_buf_name, ) continue else: assert len(children_nodes) == 1 and children_nodes[0] == node ir_node = node.node if ir_node is None or ir_node.origins is None: continue for origin in ir_node.origins: node_name = origin.name # when buf1 and buf2 both have origin=node1 # we draw node1 according to buf1 if node_name not in node_name_to_buf_name: node_name_to_buf_name[node_name] = ( buf_name if parent_buf_name is None else parent_buf_name ) def get_node_name_to_buf_meta( node_name_to_buf_name: dict[str, str], ) -> dict[str, BufMeta]: buf_name_to_n_node = {} for node_name, buf_name in node_name_to_buf_name.items(): if buf_name not in buf_name_to_n_node: buf_name_to_n_node[buf_name] = OrderedSet([node_name]) else: buf_name_to_n_node[buf_name].add(node_name) node_name_to_buf_meta = {} for node_name, buf_name in node_name_to_buf_name.items(): n_node = len(buf_name_to_n_node[buf_name]) node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node) return node_name_to_buf_meta def annotate_orig_fx_with_snodes( gm: torch.fx.GraphModule, snodes: SchedulerNodeList, ) -> None: """ Creates a FX Graph from a list of SchedulerNode objects. """ node_name_to_buf_name: dict[str, str] = {} update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name) if node_name_to_buf_name is None: return node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name) for node in gm.graph.nodes: if node.name in node_name_to_buf_meta: node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name) @contextlib.contextmanager def enable_aot_logging() -> Iterator[None]: compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1" import torch._functorch.aot_autograd log = logging.getLogger(torch._functorch.aot_autograd.__name__) stack = contextlib.ExitStack() if not compile_debug: try: yield finally: stack.close() return # Enable all graphs to be logged to a file by setting the flags to True # and the log level of the file logger to DEBUG stack.enter_context(patch("functorch.compile.config.debug_partitioner", True)) path = os.path.join(get_debug_dir(), "torchinductor") os.makedirs(path, exist_ok=True) fh = logging.FileHandler( os.path.join( path, f"aot_{get_aot_graph_name()}_debug.log", ) ) fh.setLevel(logging.DEBUG) fh.setFormatter( logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s") ) log.addHandler(fh) try: yield finally: log.removeHandler(fh) stack.close() # Used for provenance tracking # They are not stored in DebugContext because they are not set in # _inductor_triton_kernel_to_post_grad_node_info's Debug Context _inductor_post_to_pre_grad_nodes: dict[str, Any] = {} _pre_grad_graph_id: Optional[int] = None class DebugContext: _counter = itertools.count() # Used for provenance tracking _inductor_triton_kernel_to_post_grad_node_info: dict[str, list[str]] = {} @staticmethod def create_debug_dir(folder_name: str) -> Optional[str]: debug_dir = config.trace.debug_dir or get_debug_dir() for n in DebugContext._counter: dirname = os.path.join( debug_dir, "torchinductor", f"{folder_name}.{n}", ) if not os.path.exists(dirname): os.makedirs(dirname) return dirname return None def __init__(self) -> None: self._prof = None self._path = None self._stack = contextlib.ExitStack() def copy(self, new_path: str) -> None: if not self._path: return assert new_path.endswith(".debug"), new_path from filelock import FileLock try: with FileLock(f"{new_path}.lock"): if os.path.exists(new_path): shutil.rmtree(new_path) shutil.copytree(self._path, new_path) except OSError: log.warning( "Failed to copy debug files from %s to %s", self._path, new_path ) def fopen( self, filename: str, write_mode: str = "w", *args: Any, **kwargs: Any, ) -> IO[Any]: assert self._path return open(os.path.join(self._path, filename), write_mode, *args, **kwargs) @contextlib.contextmanager def fopen_context( self, filename: str, write_mode: str = "w", *args: Any, **kwargs: Any, ) -> Iterator[IO[Any]]: assert self._path with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f: yield f def filename(self, suffix: str) -> str: assert self._path return os.path.join(self._path, suffix) def upload_tar(self) -> None: if config.trace.upload_tar is not None: import tarfile assert self._path tar_file = os.path.join( self._path, f"{os.path.basename(self._path)}.tar.gz" ) with tarfile.open(tar_file, "w:gz") as tar: tar.add(self._path, arcname=os.path.basename(self._path)) config.trace.upload_tar(tar_file) def __enter__(self) -> None: if config.debug: log = logging.getLogger("torch._dynamo") prev_level = log.level log.setLevel(logging.DEBUG) def reset_log_level(level: Any) -> None: log.setLevel(level) self._stack.callback(reset_log_level, prev_level) self._stack.enter_context(V.set_debug_handler(self)) if not config.trace.enabled: return self._path = self.create_debug_dir(get_aot_graph_name()) # type: ignore[assignment] if config.trace.debug_log: self._setup_log_capture("debug.log", logging.DEBUG) if config.trace.info_log: self._setup_log_capture("info.log", logging.INFO) def _setup_log_capture( self, filename: str, level: int, ) -> None: log = logging.getLogger("torch._inductor") fd = self._stack.enter_context(self.fopen(filename)) ch = logging.StreamHandler(fd) ch.setLevel(level) ch.setFormatter( logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s") ) log.addHandler(ch) log.setLevel(min(log.level, level)) self._stack.callback(log.removeHandler, ch) def __exit__( self, exc_type: Optional[type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[Any], ) -> None: if self._prof: self._prof.disable() self._save_profile_data() if self._path: self.upload_tar() log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path) self._stack.close() def _save_profile_data(self) -> None: assert self._prof self._prof.dump_stats(self.filename("compile.prof")) with self.fopen("compile.stats") as fd: stats = pstats.Stats(self._prof, stream=fd) stats.strip_dirs() stats.sort_stats("cumtime") stats.print_stats(100) stats.sort_stats("tottime") stats.print_stats(100) def __getattr__(self, name: str) -> Optional[Callable[..., None]]: if config.trace.enabled and getattr(config.trace, name): try: return getattr(DebugFormatter(self), name) except Exception: log.warning("Ignoring exception in debug code", exc_info=True) return None else: def ignored(*args: Any, **kwargs: Any) -> None: pass return ignored class DebugFormatter: def __init__(self, handler: DebugContext) -> None: self.fopen = handler.fopen self.fopen_context = handler.fopen_context self.filename = handler.filename self.handler = handler def fx_graph( self, gm: torch.fx.GraphModule, inputs: list[torch.Tensor], ) -> None: with self.fopen("fx_graph_runnable.py") as fd: save_dir = None if torch._inductor.config.trace.save_real_tensors: inputs = torch._subclasses.fake_utils.try_convert_fake_to_real(inputs) save_dir = os.path.dirname(fd.name) # dont try to use stable hash torchinductor compilation if saving real tensors # and avoid recursively trying to save real tensors inside of the inductor compilation # regardless stable_hash = torch._inductor.config.trace.save_real_tensors with torch._inductor.config.patch( {"trace.enabled": False, "trace.save_real_tensors": False} ): save_graph_repro( fd, gm, inputs, "inductor", save_dir=save_dir, stable_hash=stable_hash, ) with self.fopen("fx_graph_readable.py") as fd: fd.write(gm.print_readable(print_output=False)) def fx_graph_transformed( self, gm: torch.fx.GraphModule, inputs: list[torch.Tensor], ) -> None: with self.fopen("fx_graph_transformed.py") as fd: fd.write(gm.print_readable(print_output=False)) def ir_pre_fusion(self, nodes: SchedulerNodeList) -> None: with self.fopen("ir_pre_fusion.txt") as fd: fd.write(self._write_ir(nodes)) def ir_post_fusion(self, nodes: SchedulerNodeList) -> None: with self.fopen("ir_post_fusion.txt") as fd: fd.write(self._write_ir(nodes)) @staticmethod def _write_ir(nodes: SchedulerNodeList) -> str: buf = io.StringIO() for node in nodes: buf.write(node.debug_str()) buf.write("\n\n\n") return buf.getvalue() def graph_diagram(self, nodes: SchedulerNodeList) -> None: draw_buffers(nodes, fname=self.filename("graph_diagram.svg")) def draw_orig_fx_graph( self, gm: torch.fx.GraphModule, nodes: SchedulerNodeList, ) -> None: annotate_orig_fx_with_snodes(gm, nodes) draw_graph( gm, fname=self.filename("orig_fx_graph_diagram.svg"), clear_meta=False, prog=GRAPHVIZ_COMMAND_SCALABLE, parse_stack_trace=True, dot_graph_shape=config.trace.dot_graph_shape, ) def output_code(self, filename: str) -> None: shutil.copy(filename, self.filename("output_code.py")) def log_inductor_triton_kernel_to_post_grad_node_info( self, filename: str = "inductor_triton_kernel_to_post_grad_nodes.json" ) -> tuple[dict[str, list[str]], dict[str, Any]]: debug_info = {} with self.fopen(filename, "w") as fd: log.info("Writing provenance tracing debugging info to %s", fd.name) debug_info = DebugContext._inductor_triton_kernel_to_post_grad_node_info json.dump(debug_info, fd) node_mapping = {} if _pre_grad_graph_id: with self.fopen( "inductor_provenance_tracking_node_mappings.json", "w" ) as fd: node_mapping = create_node_mapping( _pre_grad_graph_id, _inductor_post_to_pre_grad_nodes, debug_info ) json.dump(node_mapping, fd) return debug_info, node_mapping def log_autotuning_results( self, name: str, input_nodes: list[ir.IRNode], timings: dict["ChoiceCaller", float], # type: ignore[name-defined] # noqa: F821 elapse: float, precompile_elapse: float, ) -> None: from .ir import FixedLayout def build_node_info(node: ir.IRNode) -> dict[str, str]: if hasattr(node, "name"): node_name = node.name else: node_name = "" node_info = { "name": node_name, "type": type(node).__name__, } try: layout = node.get_output_spec() if isinstance(layout, FixedLayout): offset = 0 try: offset = int(layout.offset) except Exception: try: offset = V.graph.sizevars.size_hint( layout.offset, fallback=0 ) except Exception: pass static_layout = FixedLayout( layout.device, dtype=layout.dtype, size=[*V.graph.sizevars.size_hints(layout.size)], stride=[*V.graph.sizevars.size_hints(layout.stride)], offset=offset, ) node_info["layout"] = str(static_layout) else: node_info["layout"] = str(layout) except Exception: pass try: node_info["dtype"] = str(node.get_dtype()) except Exception: pass try: node_info["device"] = str(node.get_device()) except Exception: pass try: node_info["stride"] = str( V.graph.sizevars.size_hints(node.get_stride()) ) except Exception: pass try: node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size())) # type: ignore[arg-type] except Exception: pass try: node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel())) except Exception: pass if hasattr(node, "data") and isinstance(node.data, ir.IRNode): node_info["data"] = build_node_info(node.data) return node_info general_properties = { "op_name": name, "cuda_device_name": torch.cuda.get_device_name(), "cuda_device_count": torch.cuda.device_count(), "input_nodes": [build_node_info(node) for node in input_nodes], "autotuning_time": elapse, "precompile_time": precompile_elapse, } with self.fopen_context( "autotuning_result_json_list.txt", "at", encoding="utf-8" ) as fd: for caller, time in timings.items(): info_dict = dict(caller.info_dict()) info_dict.update(general_properties) info_dict["benchmark_result"] = time json.dump(info_dict, fd) fd.write("\n") def log_ir_pre_fusion(nodes: SchedulerNodeList) -> None: if ir_pre_fusion_log.isEnabledFor(logging.INFO): ir_pre_fusion_log.info("BEFORE FUSION\n%s", DebugFormatter._write_ir(nodes)) V.debug.ir_pre_fusion(nodes) def log_ir_post_fusion(nodes: SchedulerNodeList) -> None: if ir_post_fusion_log.isEnabledFor(logging.INFO): ir_post_fusion_log.info("AFTER FUSION\n%s", DebugFormatter._write_ir(nodes)) V.debug.ir_post_fusion(nodes) @dataclasses.dataclass class TensorMetadataHolder: tensor_metadata: TensorMetadata device: torch.device save_args_cnt = itertools.count() def create_node_mapping( pre_grad_graph_id: int, post_to_pre_grad_nodes_json: dict[str, Any], triton_kernel_to_post_grad_json: dict[str, Any], ) -> dict[str, dict[str, Any]]: """Create bidirectional mappings between: - pre_grad graph nodes and post_grad graph code nodes, and vice versa - triton kernel name and post_grad graph code nodes, and vice versa """ # return a dummy dict if there's any error empty_return: dict[str, dict[str, Any]] = { "preToPost": {}, "postToPre": {}, "cppCodeToPost": {}, "postToCppCode": {}, } log.info("Creating node mappings for provenance tracking") if not isinstance(post_to_pre_grad_nodes_json, dict): log.error("Provenance tacking error: post_to_pre_grad_nodes_json is not a dict") return empty_return if not isinstance(triton_kernel_to_post_grad_json, dict): log.error( "Provenance tacking error: triton_kernel_to_post_grad_json is not a dict" ) return empty_return if not isinstance(pre_grad_graph_id, int): log.error("Provenance tacking error: pre_grad_graph_id is not an int") return empty_return pre_to_post: dict[str, Any] = collections.defaultdict(OrderedSet) post_to_pre: dict[str, Any] = collections.defaultdict(OrderedSet) post_to_cpp_code: dict[str, Any] = collections.defaultdict(OrderedSet) try: for outer_key, node_array in triton_kernel_to_post_grad_json.items(): if not isinstance(node_array, list): log.error( "Provenance tacking error: triton_kernel_to_post_grad_json value is not a list" ) return empty_return for curr_node in node_array: post_to_cpp_code[curr_node].add(outer_key) def check_format(node: dict[str, Any]) -> bool: if not isinstance(node, dict): log.error( "Provenance tacking error: node provenance in post_to_pre_grad_nodes_json is not a dict" ) return False if "graph_id" not in node or "name" not in node or "from_node" not in node: log.error( "Provenance tacking error: node provenance in post_to_pre_grad_nodes_json has wrong format" ) return False return True for outer_key, node_array in post_to_pre_grad_nodes_json.items(): if not isinstance(node_array, list): log.error( "Provenance tacking error: post_to_pre_grad_nodes_json value is not a list" ) return empty_return for node in node_array: if not check_format(node): return empty_return # Check the current node first if node.get("graph_id") == pre_grad_graph_id: pre_to_post[node["name"]].add(outer_key) post_to_pre[outer_key].add(node["name"]) # Check nested from_node array recursively, add node with the right graph_id to the map stack = [(n, outer_key) for n in node.get("from_node", [])] while stack: current_node, parent_key = stack.pop() if not check_format(current_node): return empty_return if current_node.get("graph_id") == pre_grad_graph_id: pre_to_post[current_node["name"]].add(parent_key) post_to_pre[parent_key].add(current_node["name"]) stack.extend( (n, parent_key) for n in current_node.get("from_node", []) ) def convert_sets_to_lists(d: dict[str, Any]) -> None: for key in d: d[key] = list(d[key]) d = dict(d) # convert to list because set is not JSON serializable convert_sets_to_lists(pre_to_post) convert_sets_to_lists(post_to_pre) convert_sets_to_lists(post_to_cpp_code) return { "preToPost": pre_to_post, "postToPre": post_to_pre, "cppCodeToPost": triton_kernel_to_post_grad_json, "postToCppCode": post_to_cpp_code, } except Exception as e: # Since this is just logging code, it should never interfere with regular # program execution, so we use this try-except to guard against any error log.error("Unexpected error in create_node_mapping: %s", e) log.error("post_to_pre_grad_nodes_json: %s", post_to_pre_grad_nodes_json) log.error( "triton_kernel_to_post_grad_json: %s", triton_kernel_to_post_grad_json ) log.error("pre_grad_graph_id: %s", pre_grad_graph_id) log.error(traceback.format_exc()) return empty_return def save_args_for_compile_fx_inner(*args: Any, **kwargs: Any) -> None: """ This function is used to save arguments for a compile_fx_inner function call to the file system. Later on one can replay the compile_fx_inner call with the saved arguments using load_args_and_run_compile_fx_inner. """ folder = "/tmp/inductor_saved_args" if not os.path.exists(folder): os.mkdir(folder) def handle_tensor(x: Any) -> Any: """ Pickle FakeTensor will result in error: AttributeError: Can't pickle local object 'WeakValueDictionary.__init__..remove' Convert all Tensor to metadata. This may also makes pickle faster. """ if isinstance(x, torch.Tensor): return TensorMetadataHolder(_extract_tensor_metadata(x), x.device) else: return x args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs)) fn_name = "compile_fx_inner" path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl" with open(path, "wb") as f: pickle.dump((args_to_save, kwargs_to_save), f) if log.isEnabledFor(logging.DEBUG): message = f""" Arguments for a compile_fx_inner call is saved to {path}. To replay the call, run the following: from torch._inductor.debug import load_args_and_run_compile_fx_inner load_args_and_run_compile_fx_inner({path!r}) """ # call print rather than log.debug. log.debug will print message # prefix for each line which makes the code snippet harder to be # copied. # Not a big deal since the code is already been guarded by checking # the log level. print(message) def load_args_and_run_compile_fx_inner(path: str) -> Any: from torch._inductor.compile_fx import compile_fx_inner with open(path, "rb") as f: args, kwargs = pickle.load(f) def handle_tensor(x: Any) -> Any: if isinstance(x, TensorMetadataHolder): return torch._dynamo.testing.rand_strided( x.tensor_metadata.shape, x.tensor_metadata.stride, x.tensor_metadata.dtype, x.device, ) else: return x fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True) with fake_mode, config.patch("save_args", False): args, kwargs = tree_map(handle_tensor, (args, kwargs)) return compile_fx_inner(*args, **kwargs) def aot_inductor_minifier_wrapper( func: Callable[..., str], exported_program: torch.export.ExportedProgram, *, inductor_configs: dict[str, Any], package_path: Optional[FileLike] = None, ) -> str: from torch._dynamo.debug_utils import AccuracyError from torch._dynamo.repro.aoti import dump_to_minify from torch._inductor import config from torch._inductor.compile_fx import _aoti_flatten_inputs use_minifier = config.aot_inductor.dump_aoti_minifier gm = exported_program.module() assert isinstance(gm, torch.fx.GraphModule) args, kwargs = exported_program.example_inputs try: if use_minifier and config.aot_inductor.repro_level == 3: # Always dump the original module in case we have segfaults dump_to_minify( exported_program, "aot_inductor", options=inductor_configs, ) if use_minifier and config.aot_inductor.repro_level == 4: # Check for accuracy # We will first flatten the inputs before compiling and checking for accuracy. # This is ok because we will flatten the inputs in the minifier anyway. gm_copy = copy.deepcopy(gm) example_inputs_copy = copy.deepcopy(exported_program.example_inputs) config_copy = copy.deepcopy(inductor_configs) flat_example_inputs, config_copy = _aoti_flatten_inputs( gm_copy, example_inputs_copy[0], example_inputs_copy[1], options=config_copy, ) tuple_inputs = tuple(flat_example_inputs) flattened_ep = torch.export.export(gm_copy, tuple_inputs, strict=False) func( flattened_ep.module(), tuple_inputs, inductor_configs=config_copy, package_path=package_path, load_and_run=True, check_accuracy="accuracy", ) return func( gm, args, kwargs, inductor_configs=inductor_configs, package_path=package_path, load_and_run=use_minifier, ) except AccuracyError as e: dump_to_minify( exported_program, "aot_inductor_accuracy", command="minify", options=inductor_configs, ) log.warning("Accuracy failed") raise e except Exception as e: if use_minifier: command = "minify" if config.aot_inductor.repro_level == 1: command = "run" dump_to_minify( exported_program, "aot_inductor", command=command, options=inductor_configs, ) raise e