# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/gemma3/modular_gemma3.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_gemma3.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from collections.abc import Callable from dataclasses import dataclass from typing import Optional, Union import torch import torch.nn as nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...configuration_utils import PretrainedConfig from ...generation import GenerationMixin from ...masking_utils import create_causal_mask, create_masks_for_generate, create_sliding_window_causal_mask from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( ModelOutput, TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling, logging, ) from ...utils.deprecation import deprecate_kwarg from ...utils.generic import check_model_inputs from ..auto import AutoModel from .configuration_gemma3 import Gemma3Config, Gemma3TextConfig logger = logging.get_logger(__name__) @dataclass @auto_docstring( custom_intro=""" Base class for Gemma3 outputs, with hidden states and attentions. """ ) class Gemma3ModelOutputWithPast(BaseModelOutputWithPast): r""" past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ image_hidden_states: Optional[torch.FloatTensor] = None @dataclass @auto_docstring( custom_intro=""" Base class for Gemma3 causal language model (or autoregressive) outputs. """ ) class Gemma3CausalLMOutputWithPast(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder after projecting last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None class Gemma3TextScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: float = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.register_buffer("embed_scale", torch.tensor(embed_scale), persistent=False) def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale.to(self.weight.dtype) class Gemma3MLP(nn.Module): def __init__(self, config: Gemma3TextConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_activation] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class Gemma3RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.zeros(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()) # Llama does x.to(float16) * w whilst Gemma3 is (x * w).to(float16) # See https://github.com/huggingface/transformers/pull/29402 output = output * (1.0 + self.weight.float()) return output.type_as(x) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}" class Gemma3RotaryEmbedding(nn.Module): def __init__(self, config: Gemma3TextConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, softcap: Optional[float] = None, **kwargs, ) -> tuple[torch.Tensor, torch.Tensor]: if scaling is None: scaling = module.head_dim**-0.5 key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if softcap is not None: attn_weights = attn_weights / softcap attn_weights = torch.tanh(attn_weights) attn_weights = attn_weights * softcap if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Gemma3Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Gemma3TextConfig, layer_idx: int): super().__init__() self.is_sliding = config.layer_types[layer_idx] == "sliding_attention" self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = config.query_pre_attn_scalar**-0.5 self.attention_dropout = self.config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) self.attn_logit_softcapping = self.config.attn_logit_softcapping self.sliding_window = config.sliding_window if self.is_sliding else None self.q_norm = Gemma3RMSNorm(dim=config.head_dim, eps=config.rms_norm_eps) self.k_norm = Gemma3RMSNorm(dim=config.head_dim, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=self.attention_dropout if self.training else 0.0, scaling=self.scaling, sliding_window=self.sliding_window, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class Gemma3DecoderLayer(GradientCheckpointingLayer): def __init__(self, config: Gemma3TextConfig, layer_idx: int): super().__init__() self.config = config self.hidden_size = config.hidden_size self.layer_idx = layer_idx self.attention_type = config.layer_types[layer_idx] self.self_attn = Gemma3Attention(config=config, layer_idx=layer_idx) self.mlp = Gemma3MLP(config) self.input_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps) self.pre_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps) @deprecate_kwarg("last_cache_position", version="4.53.0") def forward( self, hidden_states: torch.Tensor, position_embeddings_global: torch.Tensor, position_embeddings_local: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # apply global RoPE to non-sliding layer only if self.self_attn.is_sliding: position_embeddings = position_embeddings_local else: position_embeddings = position_embeddings_global hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.pre_feedforward_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs @auto_docstring class Gemma3PreTrainedModel(PreTrainedModel): config: Gemma3Config base_model_prefix = "" supports_gradient_checkpointing = True _no_split_modules = [ "Gemma3DecoderLayer", "SiglipVisionEmbeddings", "SiglipEncoderLayer", "SiglipMultiheadAttentionPoolingHead", ] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": Gemma3DecoderLayer, "attentions": Gemma3Attention, } def _init_weights(self, module): super()._init_weights(module) if isinstance(module, Gemma3MultiModalProjector): module.mm_input_projection_weight.data.zero_() @auto_docstring class Gemma3TextModel(Gemma3PreTrainedModel): config: Gemma3TextConfig def __init__(self, config: Gemma3TextConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size # Gemma3 downcasts the below to bfloat16, causing sqrt(3072)=55.4256 to become 55.5. See https://github.com/huggingface/transformers/pull/29402 self.embed_tokens = Gemma3TextScaledWordEmbedding( config.vocab_size, config.hidden_size, self.padding_idx, embed_scale=self.config.hidden_size**0.5 ) self.layers = nn.ModuleList( [Gemma3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Gemma3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = Gemma3RotaryEmbedding(config=config) self.gradient_checkpointing = False # TODO: raushan fix this after RoPE refactor. For now we hack it by reassigning thetas # when we want to create a local RoPE layer. Config defaults should hold values for global RoPE config = copy.deepcopy(config) config.rope_theta = config.rope_local_base_freq config.rope_scaling = {"rope_type": "default"} self.rotary_emb_local = Gemma3RotaryEmbedding(config=config) # Initialize weights and apply final processing self.post_init() @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None and not self.training: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device, ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # It may already have been prepared by e.g. `generate` if not isinstance(causal_mask_mapping := attention_mask, dict): # Prepare mask arguments mask_kwargs = { "config": self.config, "input_embeds": inputs_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, "position_ids": position_ids, } # Create the masks causal_mask_mapping = { "full_attention": create_causal_mask(**mask_kwargs), "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs), } # embed positions hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings_global = self.rotary_emb(hidden_states, position_ids) position_embeddings_local = self.rotary_emb_local(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, position_embeddings_global=position_embeddings_global, position_embeddings_local=position_embeddings_local, attention_mask=causal_mask_mapping[decoder_layer.attention_type], position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) @auto_docstring class Gemma3ForCausalLM(Gemma3PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} config: Gemma3TextConfig base_model_prefix = "language_model" def __init__(self, config: Gemma3TextConfig): super().__init__(config) self.model = Gemma3TextModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> CausalLMOutputWithPast: r""" Example: ```python >>> from transformers import AutoTokenizer, Gemma3ForCausalLM >>> model = Gemma3ForCausalLM.from_pretrained("google/gemma-2-9b") >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" if self.training and self.config._attn_implementation != "eager": logger.warning_once( "It is strongly recommended to train Gemma3 models with the `eager` attention implementation " f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('', attn_implementation='eager')`." ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) if self.config.final_logit_softcapping is not None: logits = logits / self.config.final_logit_softcapping logits = torch.tanh(logits) logits = logits * self.config.final_logit_softcapping loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class Gemma3MultiModalProjector(nn.Module): def __init__(self, config: Gemma3Config): super().__init__() self.mm_input_projection_weight = nn.Parameter( torch.zeros(config.vision_config.hidden_size, config.text_config.hidden_size) ) self.mm_soft_emb_norm = Gemma3RMSNorm( config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps ) self.patches_per_image = int(config.vision_config.image_size // config.vision_config.patch_size) self.tokens_per_side = int(config.mm_tokens_per_image**0.5) self.kernel_size = self.patches_per_image // self.tokens_per_side self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size) def forward(self, vision_outputs: torch.Tensor): batch_size, _, seq_length = vision_outputs.shape reshaped_vision_outputs = vision_outputs.transpose(1, 2) reshaped_vision_outputs = reshaped_vision_outputs.reshape( batch_size, seq_length, self.patches_per_image, self.patches_per_image ) reshaped_vision_outputs = reshaped_vision_outputs.contiguous() pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs) pooled_vision_outputs = pooled_vision_outputs.flatten(2) pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2) normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs) projected_vision_outputs = torch.matmul(normed_vision_outputs, self.mm_input_projection_weight) return projected_vision_outputs.type_as(vision_outputs) def token_type_ids_mask_function( token_type_ids: Optional[torch.Tensor], image_group_ids: Optional[torch.Tensor], tokens_per_image: int, ) -> Optional[Callable]: """ This function adds the correct offsets to the `q_idx` and `kv_idx` as the torch API can only accept lengths, not start and end indices. """ # Do not return an additional mask in this case if token_type_ids is None: return None def inner_mask(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool: # If it's 1 for both query and key/value, we are in an image block # NOTE: static cache shape goes beyond input seq length, while token_type_ids.shape[1] == input seq length # Since vmap doesn't support `if statement` we workaround it with `torch.where` safe_idx = torch.where(kv_idx < token_type_ids.shape[1], kv_idx, 0) token_type_ids_at_kv_idx = token_type_ids[batch_idx, safe_idx] token_type_ids_at_kv_idx = torch.where(kv_idx < token_type_ids.shape[1], token_type_ids_at_kv_idx, 0) image_group_ids_at_kv_idx = image_group_ids[batch_idx, safe_idx] image_group_ids_at_kv_idx = torch.where(kv_idx < image_group_ids.shape[1], image_group_ids_at_kv_idx, -1) is_image_block = (token_type_ids[batch_idx, q_idx] == 1) & (token_type_ids_at_kv_idx == 1) same_image_block = image_group_ids[batch_idx, q_idx] == image_group_ids_at_kv_idx # This is bidirectional attention whenever we are dealing with image tokens return is_image_block & same_image_block return inner_mask @auto_docstring( custom_intro=""" The Base Gemma3 model which consists of a vision backbone and a language model withou language modeling head., """ ) class Gemma3Model(Gemma3PreTrainedModel): _checkpoint_conversion_mapping = {"language_model.model": "language_model"} # we are filtering the logits/labels so we shouldn't divide the loss based on num_items_in_batch accepts_loss_kwargs = False def __init__(self, config: Gemma3Config): super().__init__(config) self.vision_tower = AutoModel.from_config(config=config.vision_config) self.multi_modal_projector = Gemma3MultiModalProjector(config) self.vocab_size = config.text_config.vocab_size language_model = AutoModel.from_config(config=config.text_config) self.language_model = language_model self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def set_decoder(self, decoder): self.language_model = decoder def get_decoder(self): return self.language_model def get_image_features(self, pixel_values: torch.Tensor) -> torch.Tensor: """ Projects the last hidden state from the vision model into language model space. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ vision_outputs = self.vision_tower(pixel_values=pixel_values).last_hidden_state image_features = self.multi_modal_projector(vision_outputs) return image_features @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, token_type_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **lm_kwargs, ) -> Union[tuple, Gemma3ModelOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration >>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma32-3b-mix-224") >>> processor = AutoProcessor.from_pretrained("google/gemma32-3b-mix-224") >>> prompt = "Where is the cat standing?" >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs,) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Where is the cat standing?\nsnow" ```""" if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Replace image id woth PAD if the image token if OOV, to avoid index-errors if input_ids is not None and self.config.image_token_id >= self.vocab_size: special_image_mask = input_ids == self.config.image_token_id llm_input_ids = input_ids.clone() llm_input_ids[special_image_mask] = 0 else: llm_input_ids = input_ids if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(llm_input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) # Merge text and images if pixel_values is not None: image_features = self.get_image_features(pixel_values) if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) special_image_mask = special_image_mask.all(-1) else: special_image_mask = input_ids == self.config.image_token_id special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0] raise ValueError( f"Number of images does not match number of special image tokens in the input text. " f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} " "tokens from image embeddings." ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) # It may already have been prepared by e.g. `generate` if not isinstance(causal_mask_mapping := attention_mask, dict): # Prepare mask arguments mask_kwargs = { "config": self.config.get_text_config(), "input_embeds": inputs_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, "position_ids": position_ids, } if token_type_ids is not None and inputs_embeds.shape[1] != 1: # We need to pass an additional mask function to account for token type ids, and it needs to be an `or` # First find where a new image block starts: 1 if image and previous not image # The images cannot attend to future images, but can attend to all prev images and to itself bidirectionally is_image = (token_type_ids == 1).to(cache_position.device) new_image_start = is_image & ~nn.functional.pad(is_image, (1, 0), value=0)[:, :-1] image_group_ids = torch.cumsum(new_image_start.int(), dim=1) - 1 image_group_ids = torch.where(is_image, image_group_ids, torch.full_like(token_type_ids, -1)) mask_kwargs["or_mask_function"] = token_type_ids_mask_function( token_type_ids.to(cache_position.device), image_group_ids, self.config.mm_tokens_per_image ) # Create the masks causal_mask_mapping = { "full_attention": create_causal_mask(**mask_kwargs), "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs), } outputs = self.language_model( attention_mask=causal_mask_mapping, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, **lm_kwargs, ) return Gemma3ModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values if use_cache else None, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) @auto_docstring( custom_intro=""" The Base Gemma3 model which consists of a vision backbone and a language model without language modeling head., """ ) class Gemma3ForConditionalGeneration(Gemma3PreTrainedModel, GenerationMixin): _checkpoint_conversion_mapping = { "^language_model.model": "model.language_model", "^vision_tower": "model.vision_tower", "^multi_modal_projector": "model.multi_modal_projector", "^language_model.lm_head": "lm_head", } _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: Gemma3Config): super().__init__(config) self.model = Gemma3Model(config) self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) def set_decoder(self, decoder): self.model.set_decoder(decoder) def get_decoder(self): return self.model.get_decoder() def get_image_features(self, pixel_values): return self.model.get_image_features(pixel_values) # Make modules available throught conditional class for BC @property def language_model(self): return self.model.language_model @property def vision_tower(self): return self.model.vision_tower @property def multi_modal_projector(self): return self.model.multi_modal_projector @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, token_type_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **lm_kwargs, ) -> Union[tuple, Gemma3CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration >>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it") >>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it") >>> messages = [ ... { ... "role": "system", ... "content": [ ... {"type": "text", "text": "You are a helpful assistant."} ... ] ... }, ... { ... "role": "user", "content": [ ... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"}, ... {"type": "text", "text": "Where is the cat standing?"}, ... ] ... }, ... ] >>> inputs = processor.apply_chat_template( ... messages, ... tokenize=True, ... return_dict=True, ... return_tensors="pt", ... add_generation_prompt=True ... ) >>> # Generate >>> generate_ids = model.generate(**inputs) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to" ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, token_type_ids=token_type_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **lm_kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() shift_logits = logits[..., :-1, :] shift_labels = labels[..., 1:] if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device) shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous() else: shift_logits = shift_logits.contiguous() shift_labels = shift_labels.contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size) flat_labels = shift_labels.view(-1).to(shift_logits.device) loss = loss_fct(flat_logits, flat_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return Gemma3CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, cache_position=None, position_ids=None, pixel_values=None, attention_mask=None, token_type_ids=None, use_cache=True, logits_to_keep=None, labels=None, **kwargs, ): # Overwritten -- custom `position_ids` and `pixel_values` handling model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, cache_position=cache_position, use_cache=use_cache, logits_to_keep=logits_to_keep, token_type_ids=token_type_ids, **kwargs, ) # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always if cache_position[0] == 0: model_inputs["pixel_values"] = pixel_values return model_inputs @staticmethod def create_masks_for_generate( config: PretrainedConfig, input_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor], cache_position: torch.Tensor, past_key_values: Optional[Cache], position_ids: Optional[torch.Tensor], token_type_ids: Optional[torch.Tensor] = None, **kwargs, ) -> dict: # Prepare mask arguments mask_kwargs = { "config": config.get_text_config(), "input_embeds": input_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, "position_ids": position_ids, } # Add the token type ids mask for generate as well if token_type_ids is not None and input_embeds.shape[1] != 1: # We need to pass an additional mask function to account for token type ids, and it needs to be an `or` # First find where a new image block starts: 1 if image and previous not image # The images cannot attend to future images, but can attend to all prev images and to itself bidirectionally is_image = (token_type_ids == 1).to(cache_position.device) new_image_start = is_image & ~nn.functional.pad(is_image, (1, 0), value=0)[:, :-1] image_group_ids = torch.cumsum(new_image_start.int(), dim=1) - 1 image_group_ids = torch.where(is_image, image_group_ids, torch.full_like(token_type_ids, -1)) mask_kwargs["or_mask_function"] = token_type_ids_mask_function( token_type_ids.to(cache_position.device), image_group_ids, config.mm_tokens_per_image ) return create_masks_for_generate(**mask_kwargs) class Gemma3ForSequenceClassification(Gemma3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma3Model(config) self.score = nn.Linear(config.text_config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, **kwargs: Unpack[TransformersKwargs], ) -> SequenceClassifierOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.model( input_ids, attention_mask=attention_mask, pixel_values=pixel_values, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, token_type_ids=token_type_ids, use_cache=use_cache, **kwargs, ) hidden_states = transformer_outputs.last_hidden_state logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.text_config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.text_config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.text_config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = [ "Gemma3PreTrainedModel", "Gemma3TextModel", "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration", "Gemma3Model", "Gemma3ForSequenceClassification", ]