# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/mlcd/modular_mlcd.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_mlcd.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig class MLCDVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MLCDVisionModel`]. It is used to instantiate a MLCD vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the MLCD [DeepGlint-AI/mlcd-vit-bigG-patch14-336](https://huggingface.co/DeepGlint-AI/mlcd-vit-bigG-patch14-336) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1664): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 8192): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. projection_dim (`int`, *optional*, defaults to 1024): Dimensionality of text and vision projection layers. num_hidden_layers (`int`, *optional*, defaults to 48): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 336): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import MLCDVisionConfig, MLCDVisionModel >>> # Initializing a MLCDVisionConfig with DeepGlint-AI/mlcd-vit-bigG-patch14-336 style configuration >>> configuration = MLCDVisionConfig() >>> # Initializing a MLCDVisionModel (with random weights) from the DeepGlint-AI/mlcd-vit-bigG-patch14-336 style configuration >>> model = MLCDVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mlcd_vision_model" base_config_key = "vision_config" def __init__( self, hidden_size=1664, intermediate_size=8192, num_hidden_layers=48, num_attention_heads=16, num_key_value_groups=1, num_channels=3, image_size=336, patch_size=14, hidden_act="gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_groups = num_key_value_groups self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act __all__ = ["MLCDVisionConfig"]