# coding=utf-8 # Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Moshi model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig logger = logging.get_logger(__name__) class MoshiDepthConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MoshiDepthDecoder`]. It is used to instantiate a Moshi depth decoder model according to the specified arguments, defining the Moshi depth decoder config. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the MoshiDepthDecoder model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MoshiDepthDecoder`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer of the depth decoder. input_size (`int`, *optional*, defaults to 4096): Dimensionality of the input hidden states. Used to connect the main decoder to the depth decoder. num_hidden_layers (`int`, *optional*, defaults to 6): Number of depth decoder layers. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the depth decoder block. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. audio_vocab_size (`int`, *optional*, defaults to 2048): Vocabulary size of the audio part of model. Defines the number of different tokens that can be represented by the `audio_codes` passed when calling the Moshi models. max_position_embeddings (`int`, *optional*, defaults to 9): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the depth decoder. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. sliding_window (`int`, *optional*, defaults to 8): Sliding window attention window size. If not specified, will default to `8`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ffn_dim (`int`, *optional*, defaults to 5632): Dimensionality of the "intermediate" (often named feed-forward) layer in the depth decoder block. Must be even. rms_norm_eps (`float`, *optional*, defaults to 1e-08): The epsilon used by the rms normalization layers. num_codebooks (`int`, *optional*, defaults to 8): The number of audio codebooks for each audio channels. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings kwargs (*optional*): Dictionary of keyword arguments. Notably: - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the audio encoder config. Example: ```python >>> from transformers import ( ... MoshiDepthConfig, ... MoshiDepthDecoder, ... ) >>> configuration = MoshiDepthConfig() >>> # Initializing a MoshiDepthDecoder (with random weights) from the kmhf/hf-moshiko style configuration >>> model = MoshiDepthDecoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "moshi_depth" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=1024, input_size=4096, num_hidden_layers=6, num_attention_heads=16, num_key_value_heads=None, audio_vocab_size=2048, max_position_embeddings=9, hidden_act="silu", head_dim=None, initializer_range=0.02, use_cache=True, sliding_window=8, attention_dropout=0.0, ffn_dim=5632, rms_norm_eps=1e-8, num_codebooks=8, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.input_size = input_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads self.max_position_embeddings = max_position_embeddings self.hidden_act = hidden_act self.head_dim = head_dim or hidden_size // num_attention_heads self.initializer_range = initializer_range self.use_cache = use_cache self.sliding_window = sliding_window self.attention_dropout = attention_dropout if ffn_dim % 2 == 1: raise ValueError(f"`ffn_dim={ffn_dim}` must be even.") self.ffn_dim = ffn_dim self.rms_norm_eps = rms_norm_eps self.num_codebooks = num_codebooks self.audio_vocab_size = audio_vocab_size super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) class MoshiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MoshiModel`]. It is used to instantiate a Moshi model according to the specified arguments, defining the audio encoder, Moshi depth decoder and Moshi decoder configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moshiko model, e.g. [kmhf/hf-moshiko](https://huggingface.co/kmhf/hf-moshiko) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the MoshiDecoder model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MoshiDecoder`]. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the layers and the pooler layer of the main decoder. num_hidden_layers (`int`, *optional*, defaults to 32): Number of decoder layers. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the main decoder block. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. audio_vocab_size (`int`, *optional*): Vocabulary size of the audio part of model. Defines the number of different tokens that can be represented by the `audio_codes` passed when calling the Moshi models. max_position_embeddings (`int`, *optional*, defaults to 3000): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. sliding_window (`int`, *optional*, defaults to 3000): Sliding window attention window size. If not specified, will default to `3000`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ffn_dim (`int`, *optional*, defaults to 22528): Dimensionality of the "intermediate" (often named feed-forward) layer in the main decoder block. Must be even. rms_norm_eps (`float`, *optional*, defaults to 1e-08): The epsilon used by the rms normalization layers. num_codebooks (`int`, *optional*, defaults to 8): The number of audio codebooks for each audio channels. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings kwargs (*optional*): Dictionary of keyword arguments. Notably: - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the audio encoder config. - **depth__config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the depth decoder config. Example: ```python >>> from transformers import ( ... MoshiConfig, ... MoshiForConditionalGeneration, ... ) >>> configuration = MoshiConfig() >>> # Initializing a MoshiForConditionalGeneration (with random weights) from the kmhf/hf-moshiko style configuration >>> model = MoshiForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # Saving the model, including its configuration >>> model.save_pretrained("kmhf/hf-moshiko") >>> # loading model and config from pretrained folder >>> moshi_config = MoshiConfig.from_pretrained("kmhf/hf-moshiko") >>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko", config=moshi_config) ```""" model_type = "moshi" keys_to_ignore_at_inference = ["past_key_values"] sub_configs = {"audio_encoder_config": AutoConfig, "depth_decoder_config": MoshiDepthConfig} def __init__( self, vocab_size=32000, hidden_size=4096, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, audio_vocab_size=None, max_position_embeddings=3000, rope_theta=10000.0, hidden_act="silu", head_dim=None, initializer_range=0.02, use_cache=True, sliding_window=3000, attention_dropout=0.0, ffn_dim=22528, rms_norm_eps=1e-8, num_codebooks=8, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads self.max_position_embeddings = max_position_embeddings self.rope_theta = rope_theta self.hidden_act = hidden_act self.head_dim = head_dim or hidden_size // num_attention_heads self.initializer_range = initializer_range self.use_cache = use_cache self.sliding_window = sliding_window self.attention_dropout = attention_dropout if ffn_dim % 2 == 1: raise ValueError(f"`ffn_dim={ffn_dim}` must be even.") self.ffn_dim = ffn_dim self.rms_norm_eps = rms_norm_eps self.num_codebooks = num_codebooks audio_encoder_config = kwargs.pop("audio_encoder_config", {}) audio_encoder_model_type = audio_encoder_config.pop("model_type", "mimi") self.audio_encoder_config = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config) if self.num_codebooks > self.audio_encoder_config.num_codebooks: raise ValueError( f"`num_codebooks={num_codebooks}` is greater than the maximum number of codebooks that the audio encoder can deal with ({self.audio_encoder_config.num_codebooks}). Please lower it." ) self.audio_vocab_size = ( self.audio_encoder_config.codebook_size if audio_vocab_size is None else audio_vocab_size ) depth_decoder_config = kwargs.pop("depth_decoder_config", {}) depth_decoder_config.update( { "audio_vocab_size": self.audio_vocab_size, "input_size": hidden_size, "vocab_size": vocab_size, "num_codebooks": num_codebooks, } ) self.depth_decoder_config = MoshiDepthConfig(**depth_decoder_config) super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) @property def sampling_rate(self): return self.audio_encoder_config.sampling_rate @classmethod def from_audio_encoder_config( cls, audio_encoder_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`MoshiConfig`] (or a derived class) from an audio encoder configuration. Returns: [`MoshiConfig`]: An instance of a configuration object """ return cls( audio_encoder_config=audio_encoder_config.to_dict(), **kwargs, ) __all__ = ["MoshiConfig", "MoshiDepthConfig"]