from typing import Callable, Optional import torch import torch.nn as nn from ...cache_utils import Cache, DynamicCache from ...masking_utils import create_causal_mask from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import ( BaseModelOutputWithPast, ) from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import TransformersKwargs, logging from ..clip.modeling_clip import CLIPMLP from ..llama.modeling_llama import ( LlamaAttention, LlamaForCausalLM, LlamaForSequenceClassification, LlamaForTokenClassification, LlamaModel, LlamaRotaryEmbedding, apply_rotary_pos_emb, eager_attention_forward, # copied from Llama ) from .configuration_phi import PhiConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/phi-1" _CONFIG_FOR_DOC = "PhiConfig" class PhiAttention(LlamaAttention): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__(config, layer_idx) self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.dense = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True) del self.o_proj self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) self.k_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.dense(attn_output) return attn_output, attn_weights class PhiMLP(CLIPMLP): pass class PhiDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__() self.self_attn = PhiAttention(config, layer_idx=layer_idx) self.mlp = PhiMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.resid_dropout = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_outputs, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) attn_outputs = self.resid_dropout(attn_outputs) feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) hidden_states = attn_outputs + feed_forward_hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class PhiRotaryEmbedding(LlamaRotaryEmbedding): pass class PhiModel(LlamaModel): def __init__(self, config: PhiConfig): super().__init__(config) self.layers = nn.ModuleList( [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.embed_dropout = nn.Dropout(config.embd_pdrop) self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) del self.norm def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # diff with Llama # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) class PhiForCausalLM(LlamaForCausalLM): def __init__(self, config): super().__init__(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) class PhiForSequenceClassification(LlamaForSequenceClassification): pass class PhiForTokenClassification(LlamaForTokenClassification): pass __all__ = [ "PhiPreTrainedModel", # noqa: F822 "PhiModel", "PhiForCausalLM", "PhiForSequenceClassification", "PhiForTokenClassification", ]