from sympy.core.numbers import Integer from sympy.core.symbol import Symbol from sympy.concrete import Sum from sympy.physics.quantum.qexpr import QExpr, _qsympify_sequence from sympy.physics.quantum.hilbert import HilbertSpace from sympy.core.containers import Tuple x = Symbol('x') y = Symbol('y') n = Symbol('n', integer=True) m = Symbol('m', integer=True) def test_qexpr_new(): q = QExpr(0) assert q.label == (0,) assert q.hilbert_space == HilbertSpace() assert q.is_commutative is False q = QExpr(0, 1) assert q.label == (Integer(0), Integer(1)) q = QExpr._new_rawargs(HilbertSpace(), Integer(0), Integer(1)) assert q.label == (Integer(0), Integer(1)) assert q.hilbert_space == HilbertSpace() def test_qexpr_commutative(): q1 = QExpr(x) q2 = QExpr(y) assert q1.is_commutative is False assert q2.is_commutative is False assert q1*q2 != q2*q1 q = QExpr._new_rawargs(Integer(0), Integer(1), HilbertSpace()) assert q.is_commutative is False def test_qexpr_free_symbols(): q1 = QExpr(x, y) assert q1.free_symbols == {x, y} def test_qexpr_sum(): q1 = Sum(QExpr(n), (n,0,2)) assert q1.doit() == QExpr(0) + QExpr(1) + QExpr(2) q2 = Sum(QExpr(n, m), (n, 0, 2), (m, 0, 2)) assert q2.doit() == QExpr(0, 0) + QExpr(0, 1) + QExpr(0, 2) + \ QExpr(1, 0) + QExpr(1, 1) + QExpr(1, 2) + \ QExpr(2, 0) + QExpr(2, 1) + QExpr(2, 2) def test_qexpr_subs(): q1 = QExpr(x, y) assert q1.subs(x, y) == QExpr(y, y) assert q1.subs({x: 1, y: 2}) == QExpr(1, 2) def test_qsympify(): assert _qsympify_sequence([[1, 2], [1, 3]]) == (Tuple(1, 2), Tuple(1, 3)) assert _qsympify_sequence(([1, 2, [3, 4, [2, ]], 1], 3)) == \ (Tuple(1, 2, Tuple(3, 4, Tuple(2,)), 1), 3) assert _qsympify_sequence((1,)) == (1,)