# This module contains functions that *will be allowed* by dynamo """ This module contains utility functions that are explicitly allowed to be called during TorchDynamo compilation. These functions are carefully vetted to ensure they work correctly within the TorchDynamo tracing and compilation process. Key functionality groups: - Compilation State: Functions for checking compilation state (is_compiling) - Function Wrapping: Utilities for wrapping functions (wrap_inline, wrap_numpy) to work with TorchDynamo compilation - Autograd Hooks: Functions and classes for handling autograd hooks and backward passes (call_hook, FakeBackwardCFunction, etc.) - Tensor Operations: Utility functions for tensor operations and transformations """ import functools import warnings from typing import Any, Callable, Optional, TYPE_CHECKING, TypeVar, Union from typing_extensions import deprecated, ParamSpec import torch import torch.utils._pytree as pytree try: import numpy as np except ModuleNotFoundError: np = None # type: ignore[assignment] _P = ParamSpec("_P") _R = TypeVar("_R") if TYPE_CHECKING: # TorchScript does not support `@deprecated` # This is a workaround to avoid breaking TorchScript @deprecated( "`torch._dynamo.external_utils.is_compiling` is deprecated. Use `torch.compiler.is_compiling` instead.", category=FutureWarning, ) def is_compiling() -> bool: return torch.compiler.is_compiling() else: def is_compiling() -> bool: """ Indicates whether we are tracing/compiling with torch.compile() or torch.export(). """ # NOTE: With `@torch.compile(backend="eager")`, torch._dynamo.is_compiling() will get traced # and return true. torch.compiler.is_compiling() is skipped and will return false. return torch.compiler.is_compiling() def wrap_inline(fn: Callable[_P, _R]) -> Callable[_P, _R]: """ Create an extra frame around fn that is not in skipfiles. """ @functools.wraps(fn) def inner(*args: _P.args, **kwargs: _P.kwargs) -> _R: return fn(*args, **kwargs) return inner def call_hook( hook: Callable[..., Optional[torch.Tensor]], *args: Any, **kwargs: Any ) -> torch.Tensor: """ Used by compiled autograd to handle hook returning None. """ result = hook(*args) if result is None: return args[0] elif kwargs.get("hook_type") == "post_acc_grad_hook": raise RuntimeError("Tensor post accumulate grad hooks should return None.") return result def wrap_numpy(f: Callable[_P, _R]) -> Callable[_P, _R]: r"""Decorator that turns a function from ``np.ndarray``s to ``np.ndarray``s into a function from ``torch.Tensor``s to ``torch.Tensor``s. """ if not np: return f @functools.wraps(f) def wrap(*args: _P.args, **kwargs: _P.kwargs) -> pytree.PyTree: args, kwargs = pytree.tree_map_only( torch.Tensor, lambda x: x.numpy(), (args, kwargs) ) out = f(*args, **kwargs) return pytree.tree_map_only(np.ndarray, lambda x: torch.as_tensor(x), out) return wrap class FakeBackwardCFunction: def __init__( self, real: torch.autograd.function.BackwardCFunction, saved_tensors: list[torch.Tensor], ) -> None: self.real = real self.saved_tensors = saved_tensors def __getattr__(self, name: str) -> Any: if name == "saved_variables": warnings.warn( "'saved_variables' is deprecated; use 'saved_tensors'", DeprecationWarning, ) return self.saved_tensors return getattr(self.real, name) def call_backward( backward_c_function: torch.autograd.function.BackwardCFunction, saved_tensors: list[torch.Tensor], *args: Any, ) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]: fake = FakeBackwardCFunction(backward_c_function, saved_tensors) grads = fake._forward_cls.backward(fake, *args) # type: ignore[attr-defined] if not isinstance(grads, tuple): grads = (grads,) return grads def normalize_as_list(x: Any) -> list[Any]: if isinstance(x, tuple): return list(x) elif isinstance(x, list): return x return [x] def untyped_storage_size(x: torch.Tensor) -> int: return x.untyped_storage().size() class FakeCompiledAutogradEngine: @staticmethod def queue_callback( final_callbacks: list[Callable[[], None]], cb: Callable[[], None] ) -> None: final_callbacks.append(cb) @staticmethod def exec_final_callbacks(final_callbacks: list[Callable[[], None]]) -> None: i = 0 while i < len(final_callbacks): cb = final_callbacks[i] cb() i += 1 final_callbacks.clear() @staticmethod def _exec_final_callbacks_stub() -> None: pass def call_hook_from_backward_state( *args: Any, bw_state: Any, hook_name: str, **kwargs: Any ) -> Any: return getattr(bw_state, hook_name)(*args, **kwargs) def call_module_hooks_from_backward_state( _: Any, result: Any, *args: Any, bw_state: Any, hooks_name: str, module_name: str ) -> Any: module = getattr(bw_state, module_name) hooks = getattr(bw_state, hooks_name) for hook in hooks: new_result = hook(module, result, *args) if new_result is not None: result = new_result return result