# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing as mp import random import warnings from collections.abc import Mapping from dataclasses import dataclass from random import randint from typing import Any, Callable, NewType, Optional, Union import numpy as np from ..models.bert import BertTokenizer, BertTokenizerFast from ..tokenization_utils_base import PreTrainedTokenizerBase from ..utils import PaddingStrategy InputDataClass = NewType("InputDataClass", Any) """ A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary of PyTorch/TensorFlow tensors or NumPy arrays. """ DataCollator = NewType("DataCollator", Callable[[list[InputDataClass]], dict[str, Any]]) class DataCollatorMixin: def __call__(self, features, return_tensors=None): if return_tensors is None: return_tensors = self.return_tensors if return_tensors == "tf": return self.tf_call(features) elif return_tensors == "pt": return self.torch_call(features) elif return_tensors == "np": return self.numpy_call(features) else: raise ValueError(f"Framework '{return_tensors}' not recognized!") def pad_without_fast_tokenizer_warning(tokenizer, *pad_args, **pad_kwargs): """ Pads without triggering the warning about how using the pad function is sub-optimal when using a fast tokenizer. """ # To avoid errors when using Feature extractors if not hasattr(tokenizer, "deprecation_warnings"): return tokenizer.pad(*pad_args, **pad_kwargs) # Save the state of the warning, then disable it warning_state = tokenizer.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False) tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True try: padded = tokenizer.pad(*pad_args, **pad_kwargs) finally: # Restore the state of the warning. tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = warning_state return padded def default_data_collator(features: list[InputDataClass], return_tensors="pt") -> dict[str, Any]: """ Very simple data collator that simply collates batches of dict-like objects and performs special handling for potential keys named: - `label`: handles a single value (int or float) per object - `label_ids`: handles a list of values per object Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs to the model. See glue and ner for example of how it's useful. """ # In this function we'll make the assumption that all `features` in the batch # have the same attributes. # So we will look at the first element as a proxy for what attributes exist # on the whole batch. if return_tensors == "pt": return torch_default_data_collator(features) elif return_tensors == "tf": return tf_default_data_collator(features) elif return_tensors == "np": return numpy_default_data_collator(features) @dataclass class DefaultDataCollator(DataCollatorMixin): """ Very simple data collator that simply collates batches of dict-like objects and performs special handling for potential keys named: - `label`: handles a single value (int or float) per object - `label_ids`: handles a list of values per object Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs to the model. See glue and ner for example of how it's useful. This is an object (like other data collators) rather than a pure function like default_data_collator. This can be helpful if you need to set a return_tensors value at initialization. Args: return_tensors (`str`, *optional*, defaults to `"pt"`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ return_tensors: str = "pt" def __call__(self, features: list[dict[str, Any]], return_tensors=None) -> dict[str, Any]: if return_tensors is None: return_tensors = self.return_tensors return default_data_collator(features, return_tensors) def torch_default_data_collator(features: list[InputDataClass]) -> dict[str, Any]: import torch if not isinstance(features[0], Mapping): features = [vars(f) for f in features] first = features[0] batch = {} # Special handling for labels. # Ensure that tensor is created with the correct type # (it should be automatically the case, but let's make sure of it.) if "label" in first and first["label"] is not None: label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"] dtype = torch.long if isinstance(label, int) else torch.float batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype) elif "label_ids" in first and first["label_ids"] is not None: if isinstance(first["label_ids"], torch.Tensor): batch["labels"] = torch.stack([f["label_ids"] for f in features]) else: dtype = torch.long if isinstance(first["label_ids"][0], int) else torch.float batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype) # Handling of all other possible keys. # Again, we will use the first element to figure out which key/values are not None for this model. for k, v in first.items(): if k not in ("label", "label_ids") and v is not None and not isinstance(v, str): if isinstance(v, torch.Tensor): batch[k] = torch.stack([f[k] for f in features]) elif isinstance(v, np.ndarray): batch[k] = torch.from_numpy(np.stack([f[k] for f in features])) else: batch[k] = torch.tensor([f[k] for f in features]) return batch def tf_default_data_collator(features: list[InputDataClass]) -> dict[str, Any]: import tensorflow as tf if not isinstance(features[0], Mapping): features = [vars(f) for f in features] first = features[0] batch = {} # Special handling for labels. # Ensure that tensor is created with the correct type # (it should be automatically the case, but let's make sure of it.) if "label" in first and first["label"] is not None: label_col_name = "label" elif "label_ids" in first and first["label_ids"] is not None: label_col_name = "label_ids" elif "labels" in first and first["labels"] is not None: label_col_name = "labels" else: label_col_name = None if label_col_name is not None: if isinstance(first[label_col_name], tf.Tensor): dtype = tf.int64 if first[label_col_name].dtype.is_integer else tf.float32 elif isinstance(first[label_col_name], np.ndarray) or isinstance(first[label_col_name], np.generic): dtype = tf.int64 if np.issubdtype(first[label_col_name].dtype, np.integer) else tf.float32 elif isinstance(first[label_col_name], (tuple, list)): dtype = tf.int64 if isinstance(first[label_col_name][0], int) else tf.float32 else: dtype = tf.int64 if isinstance(first[label_col_name], int) else tf.float32 batch["labels"] = tf.convert_to_tensor([f[label_col_name] for f in features], dtype=dtype) # Handling of all other possible keys. # Again, we will use the first element to figure out which key/values are not None for this model. for k, v in first.items(): if k not in ("label", "label_ids", "labels") and v is not None and not isinstance(v, str): if isinstance(v, (tf.Tensor, np.ndarray)): batch[k] = tf.stack([f[k] for f in features]) else: batch[k] = tf.convert_to_tensor([f[k] for f in features]) return batch def numpy_default_data_collator(features: list[InputDataClass]) -> dict[str, Any]: if not isinstance(features[0], Mapping): features = [vars(f) for f in features] first = features[0] batch = {} # Special handling for labels. # Ensure that tensor is created with the correct type # (it should be automatically the case, but let's make sure of it.) if "label" in first and first["label"] is not None: label = first["label"].item() if isinstance(first["label"], np.ndarray) else first["label"] dtype = np.int64 if isinstance(label, int) else np.float32 batch["labels"] = np.array([f["label"] for f in features], dtype=dtype) elif "label_ids" in first and first["label_ids"] is not None: if isinstance(first["label_ids"], np.ndarray): batch["labels"] = np.stack([f["label_ids"] for f in features]) else: dtype = np.int64 if isinstance(first["label_ids"][0], int) else np.float32 batch["labels"] = np.array([f["label_ids"] for f in features], dtype=dtype) # Handling of all other possible keys. # Again, we will use the first element to figure out which key/values are not None for this model. for k, v in first.items(): if k not in ("label", "label_ids") and v is not None and not isinstance(v, str): if isinstance(v, np.ndarray): batch[k] = np.stack([f[k] for f in features]) else: batch[k] = np.array([f[k] for f in features]) return batch @dataclass class DataCollatorWithPadding: """ Data collator that will dynamically pad the inputs received. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single sequence is provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.0 (Volta). return_tensors (`str`, *optional*, defaults to `"pt"`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None return_tensors: str = "pt" def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]: batch = pad_without_fast_tokenizer_warning( self.tokenizer, features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=self.return_tensors, ) if "label" in batch: batch["labels"] = batch["label"] del batch["label"] if "label_ids" in batch: batch["labels"] = batch["label_ids"] del batch["label_ids"] return batch @dataclass class DataCollatorForTokenClassification(DataCollatorMixin): """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single sequence is provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.0 (Volta). label_pad_token_id (`int`, *optional*, defaults to -100): The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). return_tensors (`str`, *optional*, defaults to `"pt"`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 return_tensors: str = "pt" def torch_call(self, features): import torch label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features] batch = pad_without_fast_tokenizer_warning( self.tokenizer, no_labels_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) if labels is None: return batch sequence_length = batch["input_ids"].shape[1] padding_side = self.tokenizer.padding_side def to_list(tensor_or_iterable): if isinstance(tensor_or_iterable, torch.Tensor): return tensor_or_iterable.tolist() return list(tensor_or_iterable) if padding_side == "right": batch[label_name] = [ to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels ] else: batch[label_name] = [ [self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels ] batch[label_name] = torch.tensor(batch[label_name], dtype=torch.int64) return batch def tf_call(self, features): import tensorflow as tf label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None batch = pad_without_fast_tokenizer_warning( self.tokenizer, features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, # Conversion to tensors will fail if we have labels as they are not of the same length yet. return_tensors="tf" if labels is None else None, ) if labels is None: return batch sequence_length = tf.convert_to_tensor(batch["input_ids"]).shape[1] padding_side = self.tokenizer.padding_side if padding_side == "right": batch["labels"] = [ list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels ] else: batch["labels"] = [ [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels ] batch = {k: tf.convert_to_tensor(v, dtype=tf.int64) for k, v in batch.items()} return batch def numpy_call(self, features): label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None batch = pad_without_fast_tokenizer_warning( self.tokenizer, features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, # Conversion to tensors will fail if we have labels as they are not of the same length yet. return_tensors="np" if labels is None else None, ) if labels is None: return batch sequence_length = np.array(batch["input_ids"]).shape[1] padding_side = self.tokenizer.padding_side if padding_side == "right": batch["labels"] = [ list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels ] else: batch["labels"] = [ [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels ] batch = {k: np.array(v, dtype=np.int64) for k, v in batch.items()} return batch def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None): """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.""" import torch # Tensorize if necessary. if isinstance(examples[0], (list, tuple, np.ndarray)): examples = [torch.tensor(e, dtype=torch.long) for e in examples] length_of_first = examples[0].size(0) # Check if padding is necessary. are_tensors_same_length = all(x.size(0) == length_of_first for x in examples) if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0): if not isinstance(examples, torch.Tensor): return torch.stack(examples, dim=0) # If yes, check if we have a `pad_token`. if tokenizer.pad_token is None: raise ValueError( "You are attempting to pad samples but the tokenizer you are using" f" ({tokenizer.__class__.__name__}) does not have a pad token." ) # Creating the full tensor and filling it with our data. max_length = max(x.size(0) for x in examples) if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id) for i, example in enumerate(examples): if tokenizer.padding_side == "right": result[i, : example.shape[0]] = example else: result[i, -example.shape[0] :] = example return result def _tf_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None): import tensorflow as tf """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.""" # Tensorize if necessary. if isinstance(examples[0], (list, tuple)): examples = [tf.convert_to_tensor(e, dtype=tf.int64) for e in examples] # Check if padding is necessary. length_of_first = len(examples[0]) are_tensors_same_length = all(len(x) == length_of_first for x in examples) if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0): return tf.stack(examples, axis=0) # If yes, check if we have a `pad_token`. if tokenizer.pad_token is None: raise ValueError( "You are attempting to pad samples but the tokenizer you are using" f" ({tokenizer.__class__.__name__}) does not have a pad token." ) # Creating the full tensor and filling it with our data. max_length = max(len(x) for x in examples) if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of # result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id) result = [] rank = tf.rank(examples[0]) paddings = np.zeros((rank, 2), dtype=np.int32) for example in examples: if tokenizer.padding_side == "right": paddings[0, 1] = max_length - len(example) else: paddings[0, 0] = max_length - len(example) result.append(tf.pad(example, paddings, constant_values=tokenizer.pad_token_id)) return tf.stack(result, axis=0) def _numpy_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None): """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.""" # Tensorize if necessary. if isinstance(examples[0], (list, tuple)): examples = [np.array(e, dtype=np.int64) for e in examples] # Check if padding is necessary. length_of_first = len(examples[0]) are_tensors_same_length = all(len(x) == length_of_first for x in examples) if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0): return np.stack(examples, axis=0) # If yes, check if we have a `pad_token`. if tokenizer.pad_token is None: raise ValueError( "You are attempting to pad samples but the tokenizer you are using" f" ({tokenizer.__class__.__name__}) does not have a pad token." ) # Creating the full tensor and filling it with our data. max_length = max(len(x) for x in examples) if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of result = np.full(shape=(len(examples), max_length), fill_value=tokenizer.pad_token_id, dtype=examples[0].dtype) for i, example in enumerate(examples): if tokenizer.padding_side == "right": result[i, : example.shape[0]] = example else: result[i, -example.shape[0] :] = example return result @dataclass class DataCollatorForMultipleChoice(DataCollatorMixin): """ Data collator that dynamically pads a batch of nested examples for multiple choice, so that all choices of all examples have the same length. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences according to the model's padding side and padding index among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence is provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): Pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). return_tensors (`str`, *optional*, defaults to `"pt"`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None return_tensors: str = "pt" def torch_call(self, examples: list[dict[str, Any]]): # Refactored implementation from the docs. import torch # Take labels out of the examples beforehand, because they aren't nested. label_name = "label" if "label" in examples[0].keys() else "labels" labels = [example.pop(label_name) for example in examples] batch_size = len(examples) num_choices = len(examples[0]["input_ids"]) # Go from e.g. 2 examples of 2 choices [{input_ids: [[1], [2]]}, {input_ids: [[3], [4]]}] # to 4 examples [{input_ids: [1]}, {input_ids: [2]}] + [{input_ids: [3]}, {input_ids: [4]}] flat_examples = sum( ([{k: v[i] for k, v in example.items()} for i in range(num_choices)] for example in examples), start=[] ) # Pad all choices of all examples as if you're padding any other batch of examples. batch = self.tokenizer.pad( flat_examples, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) # Reshape from B*C x L into B x C x L, and add the labels back in. batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()} batch["labels"] = torch.tensor(labels, dtype=torch.int64) return batch def tf_call(self, features): # Implementation taken from the docs. import tensorflow as tf label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature.pop(label_name) for feature in features] batch_size = len(features) num_choices = len(features[0]["input_ids"]) flattened_features = [ [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features ] flattened_features = sum(flattened_features, []) # Sometimes written as list(chain(*flattened_features)) batch = self.tokenizer.pad( flattened_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="tf", ) batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()} batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64) return batch @dataclass class DataCollatorForSeq2Seq: """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. model ([`PreTrainedModel`], *optional*): The model that is being trained. If set and has the *prepare_decoder_input_ids_from_labels*, use it to prepare the *decoder_input_ids* This is useful when using *label_smoothing* to avoid calculating loss twice. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single sequence is provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.0 (Volta). label_pad_token_id (`int`, *optional*, defaults to -100): The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions). return_tensors (`str`, *optional*, defaults to `"pt"`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ tokenizer: PreTrainedTokenizerBase model: Optional[Any] = None padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 return_tensors: str = "pt" def __call__(self, features, return_tensors=None): if return_tensors is None: return_tensors = self.return_tensors label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None # reconvert list[None] to None if necessary # this might occur when we pass {..., "labels": None} if labels is not None and all(label is None for label in labels): labels = None non_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features] # run through tokenizer without labels to ensure no side effects batch = pad_without_fast_tokenizer_warning( self.tokenizer, non_labels_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=return_tensors, ) # we have to pad the labels manually as we cannot rely on `tokenizer.pad` and we need them to be of the same length to return tensors no_padding = self.padding is False or self.padding == PaddingStrategy.DO_NOT_PAD if labels is not None: if no_padding: if isinstance(features[0][label_name], list): batch["labels"] = list(labels) else: batch["labels"] = [np.concatenate([label, []]) for label in labels] else: max_padding = self.padding == PaddingStrategy.MAX_LENGTH and self.max_length is not None max_label_length = max(len(l) for l in labels) if not max_padding else self.max_length if self.pad_to_multiple_of is not None: max_label_length = ( (max_label_length + self.pad_to_multiple_of - 1) // self.pad_to_multiple_of * self.pad_to_multiple_of ) padding_side = self.tokenizer.padding_side if isinstance(features[0][label_name], list): batch["labels"] = [ label + [self.label_pad_token_id] * (max_label_length - len(label)) if padding_side == "right" else [self.label_pad_token_id] * (max_label_length - len(label)) + label for label in labels ] else: batch["labels"] = [ np.concatenate( [ label, np.array([self.label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64), ] ) if padding_side == "right" else np.concatenate( [ np.array([self.label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64), label, ] ) for label in labels ] # reintroduce side effects via tokenizer that return respective datatypes for the `return_tensors` argument if batch.get("labels", None) is not None: if return_tensors == "pt": import torch batch["labels"] = torch.tensor(batch["labels"], dtype=torch.int64) elif return_tensors == "tf": import tensorflow as tf batch["labels"] = tf.constant(batch["labels"], dtype=tf.int64) else: batch["labels"] = np.array(batch["labels"], dtype=np.int64) else: batch["labels"] = None # prepare decoder_input_ids if ( labels is not None and self.model is not None and hasattr(self.model, "prepare_decoder_input_ids_from_labels") ): decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=batch["labels"]) batch["decoder_input_ids"] = decoder_input_ids return batch @dataclass class DataCollatorForLanguageModeling(DataCollatorMixin): """ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they are not all of the same length. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. mlm (`bool`, *optional*, defaults to `True`): Whether or not to use masked language modeling. If set to `False`, the labels are the same as the inputs with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for non-masked tokens and the value to predict for the masked token. mlm_probability (`float`, *optional*, defaults to 0.15): The probability with which to (randomly) mask tokens in the input, when `mlm` is set to `True`. mask_replace_prob (`float`, *optional*, defaults to 0.8): The probability with which masked tokens are replaced by the tokenizer's mask token (e.g., `[MASK]`). Defaults to 0.8, meaning 80% of the masked tokens will be replaced with `[MASK]`. Only works when `mlm` is set to `True`. random_replace_prob (`float`, *optional*, defaults to 0.1): The probability with which masked tokens are replaced by random tokens from the tokenizer's vocabulary. Defaults to 0.1, meaning 10% of the masked tokens will be replaced with random tokens. The remaining masked tokens (1 - mask_replace_prob - random_replace_prob) are left unchanged. Only works when `mlm` is set to `True`. pad_to_multiple_of (`int`, *optional*): If set, will pad the sequence to a multiple of the provided value. return_tensors (`str`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". seed (`int`, *optional*): The seed to use for the random number generator for masking. If not provided, the global RNG will be used. For best performance, this data collator should be used with a dataset having items that are dictionaries or BatchEncoding, with the `"special_tokens_mask"` key, as returned by a [`PreTrainedTokenizer`] or a [`PreTrainedTokenizerFast`] with the argument `return_special_tokens_mask=True`. 1. Default Behavior: - `mask_replace_prob=0.8`, `random_replace_prob=0.1`. - Expect 80% of masked tokens replaced with `[MASK]`, 10% replaced with random tokens, and 10% left unchanged. 2. All masked tokens replaced by `[MASK]`: - `mask_replace_prob=1.0`, `random_replace_prob=0.0`. - Expect all masked tokens to be replaced with `[MASK]`. No tokens are left unchanged or replaced with random tokens. 3. No `[MASK]` replacement, only random tokens: - `mask_replace_prob=0.0`, `random_replace_prob=1.0`. - Expect all masked tokens to be replaced with random tokens. No `[MASK]` replacements or unchanged tokens. 4. Balanced replacement: - `mask_replace_prob=0.5`, `random_replace_prob=0.4`. - Expect 50% of masked tokens replaced with `[MASK]`, 40% replaced with random tokens, and 10% left unchanged. Note: The sum of `mask_replace_prob` and `random_replace_prob` must not exceed 1. If their sum is less than 1, the remaining proportion will consist of masked tokens left unchanged. """ tokenizer: PreTrainedTokenizerBase mlm: bool = True mlm_probability: Optional[float] = 0.15 mask_replace_prob: float = 0.8 random_replace_prob: float = 0.1 pad_to_multiple_of: Optional[int] = None tf_experimental_compile: bool = False return_tensors: str = "pt" seed: Optional[int] = None def __post_init__(self): if self.mlm: if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. " "You should pass `mlm=False` to train on causal language modeling instead." ) if self.mlm_probability is None or self.mlm_probability < 0 or self.mlm_probability > 1: raise ValueError("mlm_probability should be between 0 and 1.") self.mlm_probability = float(self.mlm_probability) if self.mask_replace_prob + self.random_replace_prob > 1: raise ValueError("The sum of mask_replace_prob and random_replace_prob should not exceed 1") if self.mask_replace_prob < 0 or self.mask_replace_prob > 1: raise ValueError("mask_replace_prob should be between 0 and 1.") if self.random_replace_prob < 0 or self.random_replace_prob > 1: raise ValueError("random_replace_prob should be between 0 and 1.") self.mask_replace_prob = float(self.mask_replace_prob) self.random_replace_prob = float(self.random_replace_prob) if self.tf_experimental_compile: import tensorflow as tf self.tf_mask_tokens = tf.function(self.tf_mask_tokens, jit_compile=True) self.generator = None def get_generator(self, seed): if self.return_tensors == "pt": import torch return torch.Generator().manual_seed(seed) elif self.return_tensors == "tf": import tensorflow as tf return tf.random.Generator.from_seed(seed) else: import numpy as np return np.random.default_rng(seed) def create_rng(self): if mp.current_process().name == "MainProcess": # If we are in the main process, we create a generator object with the seed self.generator = self.get_generator(self.seed) else: # If we are in a worker process (i.e using multiprocessing), we need to set a unique seed for each # worker's generator, generated as the main seed + the worker's ID. # (https://pytorch.org/docs/stable/data.html#randomness-in-multi-process-data-loading) # Only PyTorch DataLoader allows us to access the worker ID, and so we check for this. # For other frameworks, we will throw an error. import torch worker_info = torch.utils.data.get_worker_info() if worker_info is None: error_string = ( "Worker process information is not available for seeding the generator. This may be because", "you are using multiprocessing without using a PyTorch DataLoader. The `seed` parameter can", "only be used when using multiprocessing with a PyTorch DataLoader. Please either use a", "single process or use a PyTorch DataLoader with multiple workers.", ) raise ValueError(error_string) self.generator = self.get_generator(self.seed + worker_info.id) @staticmethod def tf_bernoulli(shape, probability, generator=None): import tensorflow as tf prob_matrix = tf.fill(shape, probability) # if generator exists, use it to generate the random numbers # otherwise, use the global RNG if generator: return tf.cast(prob_matrix - generator.uniform(shape, 0, 1) >= 0, tf.bool) else: return tf.cast(prob_matrix - tf.random.uniform(shape, 0, 1) >= 0, tf.bool) def tf_mask_tokens( self, inputs: Any, vocab_size, mask_token_id, special_tokens_mask: Optional[Any] = None ) -> tuple[Any, Any]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ import tensorflow as tf mask_token_id = tf.cast(mask_token_id, inputs.dtype) input_shape = tf.shape(inputs) # 1 for a special token, 0 for a normal token in the special tokens mask # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) masked_indices = self.tf_bernoulli(input_shape, self.mlm_probability, self.generator) & ~special_tokens_mask # Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens labels = tf.where(masked_indices, inputs, -100) # mask_replace_prob% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = self.tf_bernoulli(input_shape, self.mask_replace_prob, self.generator) & masked_indices inputs = tf.where(indices_replaced, mask_token_id, inputs) if self.mask_replace_prob == 1 or self.random_replace_prob == 0: return inputs, labels remaining_prob = 1 - self.mask_replace_prob # scaling the random_replace_prob to the remaining probability for example if # mask_replace_prob = 0.8 and random_replace_prob = 0.1, # then random_replace_prob_scaled = 0.1 / 0.2 = 0.5 random_replace_prob_scaled = self.random_replace_prob / remaining_prob # random_replace_prob% of the time, we replace masked input tokens with random word indices_random = ( self.tf_bernoulli(input_shape, random_replace_prob_scaled, self.generator) & masked_indices & ~indices_replaced ) if self.generator: random_words = self.generator.uniform(input_shape, maxval=vocab_size, dtype=inputs.dtype) else: random_words = tf.random.uniform(input_shape, maxval=vocab_size, dtype=inputs.dtype) inputs = tf.where(indices_random, random_words, inputs) # The rest of the time ((1-random_replace_prob-mask_replace_prob)% of the time) we keep the masked input tokens unchanged return inputs, labels def tf_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: import tensorflow as tf if self.seed and self.generator is None: # If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator. # If no seed supplied, we will use the global RNG self.create_rng() # Handle dict or lists with proper padding and conversion to tensor. if isinstance(examples[0], Mapping): batch = pad_without_fast_tokenizer_warning( self.tokenizer, examples, return_tensors="tf", pad_to_multiple_of=self.pad_to_multiple_of ) else: batch = { "input_ids": _tf_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) } # If special token mask has been preprocessed, pop it from the dict. special_tokens_mask = batch.pop("special_tokens_mask", None) if self.mlm: if special_tokens_mask is None: special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in batch["input_ids"].numpy().tolist() ] # Cannot directly create as bool special_tokens_mask = tf.cast(tf.convert_to_tensor(special_tokens_mask, dtype=tf.int64), tf.bool) else: special_tokens_mask = tf.cast(special_tokens_mask, tf.bool) batch["input_ids"], batch["labels"] = self.tf_mask_tokens( tf.cast(batch["input_ids"], tf.int64), special_tokens_mask=special_tokens_mask, mask_token_id=self.tokenizer.mask_token_id, vocab_size=len(self.tokenizer), ) else: labels = batch["input_ids"] if self.tokenizer.pad_token_id is not None: # Replace self.tokenizer.pad_token_id with -100 labels = tf.where(labels == self.tokenizer.pad_token_id, -100, labels) else: labels = tf.identity(labels) # Makes a copy, just in case batch["labels"] = labels return batch def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: # Handle dict or lists with proper padding and conversion to tensor. if self.seed and self.generator is None: # If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator. # If no seed supplied, we will use the global RNG self.create_rng() if isinstance(examples[0], Mapping): batch = pad_without_fast_tokenizer_warning( self.tokenizer, examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of ) else: batch = { "input_ids": _torch_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) } # If special token mask has been preprocessed, pop it from the dict. special_tokens_mask = batch.pop("special_tokens_mask", None) if self.mlm: batch["input_ids"], batch["labels"] = self.torch_mask_tokens( batch["input_ids"], special_tokens_mask=special_tokens_mask ) else: labels = batch["input_ids"].clone() if self.tokenizer.pad_token_id is not None: labels[labels == self.tokenizer.pad_token_id] = -100 batch["labels"] = labels return batch def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> tuple[Any, Any]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ import torch labels = inputs.clone() # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) probability_matrix = torch.full(labels.shape, self.mlm_probability) if special_tokens_mask is None: special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool) else: special_tokens_mask = special_tokens_mask.bool() probability_matrix.masked_fill_(special_tokens_mask, value=0.0) masked_indices = torch.bernoulli(probability_matrix, generator=self.generator).bool() labels[~masked_indices] = -100 # We only compute loss on masked tokens # mask_replace_prob% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = ( torch.bernoulli(torch.full(labels.shape, self.mask_replace_prob), generator=self.generator).bool() & masked_indices ) inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) if self.mask_replace_prob == 1 or self.random_replace_prob == 0: return inputs, labels remaining_prob = 1 - self.mask_replace_prob # scaling the random_replace_prob to the remaining probability for example if # mask_replace_prob = 0.8 and random_replace_prob = 0.1, # then random_replace_prob_scaled = 0.1 / 0.2 = 0.5 random_replace_prob_scaled = self.random_replace_prob / remaining_prob # random_replace_prob% of the time, we replace masked input tokens with random word indices_random = ( torch.bernoulli(torch.full(labels.shape, random_replace_prob_scaled), generator=self.generator).bool() & masked_indices & ~indices_replaced ) random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long, generator=self.generator) inputs[indices_random] = random_words[indices_random] # The rest of the time ((1-random_replace_prob-mask_replace_prob)% of the time) we keep the masked input tokens unchanged return inputs, labels def numpy_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: # Handle dict or lists with proper padding and conversion to tensor. if self.seed and self.generator is None: # If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator. # If no seed supplied, we will use the global RNG self.create_rng() if isinstance(examples[0], Mapping): batch = pad_without_fast_tokenizer_warning( self.tokenizer, examples, return_tensors="np", pad_to_multiple_of=self.pad_to_multiple_of ) else: batch = { "input_ids": _numpy_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) } # If special token mask has been preprocessed, pop it from the dict. special_tokens_mask = batch.pop("special_tokens_mask", None) if self.mlm: batch["input_ids"], batch["labels"] = self.numpy_mask_tokens( batch["input_ids"], special_tokens_mask=special_tokens_mask ) else: labels = np.copy(batch["input_ids"]) if self.tokenizer.pad_token_id is not None: labels[labels == self.tokenizer.pad_token_id] = -100 batch["labels"] = labels return batch def numpy_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> tuple[Any, Any]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ labels = np.copy(inputs) # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) probability_matrix = np.full(labels.shape, self.mlm_probability) if special_tokens_mask is None: special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] special_tokens_mask = np.array(special_tokens_mask, dtype=bool) else: special_tokens_mask = special_tokens_mask.astype(bool) probability_matrix[special_tokens_mask] = 0 # Numpy doesn't have bernoulli, so we use a binomial with 1 trial if self.generator: masked_indices = self.generator.binomial(1, probability_matrix, size=probability_matrix.shape).astype(bool) else: masked_indices = np.random.binomial(1, probability_matrix, size=probability_matrix.shape).astype(bool) labels[~masked_indices] = -100 # We only compute loss on masked tokens # mask_replace_prob% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) if self.generator: indices_replaced = ( self.generator.binomial(1, self.mask_replace_prob, size=labels.shape).astype(bool) & masked_indices ) else: indices_replaced = ( np.random.binomial(1, self.mask_replace_prob, size=labels.shape).astype(bool) & masked_indices ) inputs[indices_replaced] = self.tokenizer.mask_token_id if self.mask_replace_prob == 1 or self.random_replace_prob == 0: return inputs, labels remaining_prob = 1 - self.mask_replace_prob # scaling the random_replace_prob to the remaining probability for example if # mask_replace_prob = 0.8 and random_replace_prob = 0.1, # then random_replace_prob_scaled = 0.1 / 0.2 = 0.5 random_replace_prob_scaled = self.random_replace_prob / remaining_prob if self.generator: indices_random = ( self.generator.binomial(1, random_replace_prob_scaled, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced ) random_words = self.generator.integers( low=0, high=len(self.tokenizer), size=np.count_nonzero(indices_random), dtype=np.int64 ) else: indices_random = ( np.random.binomial(1, random_replace_prob_scaled, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced ) random_words = np.random.randint( low=0, high=len(self.tokenizer), size=np.count_nonzero(indices_random), dtype=np.int64 ) inputs[indices_random] = random_words # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels @dataclass class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling): """ Data collator used for language modeling that masks entire words. - collates batches of tensors, honoring their tokenizer's pad_token - preprocesses batches for masked language modeling This collator relies on details of the implementation of subword tokenization by [`BertTokenizer`], specifically that subword tokens are prefixed with *##*. For tokenizers that do not adhere to this scheme, this collator will produce an output that is roughly equivalent to [`.DataCollatorForLanguageModeling`]. """ def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: if self.seed and self.generator is None: # If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator. # If no seed supplied, we will use the global RNG self.create_rng() if isinstance(examples[0], Mapping): input_ids = [e["input_ids"] for e in examples] else: input_ids = examples examples = [{"input_ids": e} for e in examples] batch_input = _torch_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) mask_labels = [] for e in examples: ref_tokens = [] for id in tolist(e["input_ids"]): token = self.tokenizer._convert_id_to_token(id) ref_tokens.append(token) # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢] if "chinese_ref" in e: ref_pos = tolist(e["chinese_ref"]) len_seq = len(e["input_ids"]) for i in range(len_seq): if i in ref_pos: ref_tokens[i] = "##" + ref_tokens[i] mask_labels.append(self._whole_word_mask(ref_tokens)) batch_mask = _torch_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) inputs, labels = self.torch_mask_tokens(batch_input, batch_mask) return {"input_ids": inputs, "labels": labels} def tf_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: import tensorflow as tf if self.seed and self.generator is None: # If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator. # If no seed supplied, we will use the global RNG self.create_rng() if isinstance(examples[0], Mapping): input_ids = [e["input_ids"] for e in examples] else: input_ids = examples examples = [{"input_ids": e} for e in examples] batch_input = _tf_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) mask_labels = [] for e in examples: ref_tokens = [] for id in tolist(e["input_ids"]): token = self.tokenizer._convert_id_to_token(id) ref_tokens.append(token) # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢] if "chinese_ref" in e: ref_pos = tolist(e["chinese_ref"]) len_seq = len(e["input_ids"]) for i in range(len_seq): if i in ref_pos: ref_tokens[i] = "##" + ref_tokens[i] mask_labels.append(self._whole_word_mask(ref_tokens)) batch_mask = _tf_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) inputs, labels = self.tf_mask_tokens(tf.cast(batch_input, tf.int64), batch_mask) return {"input_ids": inputs, "labels": labels} def numpy_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: if self.seed and self.generator is None: # If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator. # If no seed supplied, we will use the global RNG self.create_rng() if isinstance(examples[0], Mapping): input_ids = [e["input_ids"] for e in examples] else: input_ids = examples examples = [{"input_ids": e} for e in examples] batch_input = _numpy_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) mask_labels = [] for e in examples: ref_tokens = [] for id in tolist(e["input_ids"]): token = self.tokenizer._convert_id_to_token(id) ref_tokens.append(token) # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢] if "chinese_ref" in e: ref_pos = tolist(e["chinese_ref"]) len_seq = len(e["input_ids"]) for i in range(len_seq): if i in ref_pos: ref_tokens[i] = "##" + ref_tokens[i] mask_labels.append(self._whole_word_mask(ref_tokens)) batch_mask = _numpy_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of) inputs, labels = self.numpy_mask_tokens(batch_input, batch_mask) return {"input_ids": inputs, "labels": labels} def _shuffle(self, cand_indexes): # if no seed, just use random's shuffle if self.seed is None: random.shuffle(cand_indexes) return cand_indexes # if seed is provided, use the generator to shuffle if self.return_tensors == "pt": import torch indices = torch.randperm(len(cand_indexes), generator=self.generator) return [cand_indexes[i] for i in indices] elif self.return_tensors == "tf": import tensorflow as tf seed = self.generator.make_seeds(2)[0] indices = tf.random.experimental.stateless_shuffle(tf.range(len(cand_indexes)), seed=seed).numpy().tolist() return [cand_indexes[i] for i in indices] elif self.return_tensors == "np": self.generator.shuffle(cand_indexes) return cand_indexes def _whole_word_mask(self, input_tokens: list[str], max_predictions=512): """ Get 0/1 labels for masked tokens with whole word mask proxy """ if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)): warnings.warn( "DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers. " "Please refer to the documentation for more information." ) cand_indexes = [] for i, token in enumerate(input_tokens): if token == "[CLS]" or token == "[SEP]": continue if len(cand_indexes) >= 1 and token.startswith("##"): cand_indexes[-1].append(i) else: cand_indexes.append([i]) cand_indexes = self._shuffle(cand_indexes) num_to_predict = min(max_predictions, max(1, int(round(len(input_tokens) * self.mlm_probability)))) masked_lms = [] covered_indexes = set() for index_set in cand_indexes: if len(masked_lms) >= num_to_predict: break # If adding a whole-word mask would exceed the maximum number of # predictions, then just skip this candidate. if len(masked_lms) + len(index_set) > num_to_predict: continue for index in index_set: covered_indexes.add(index) masked_lms.append(index) if len(covered_indexes) != len(masked_lms): raise ValueError("Length of covered_indexes is not equal to length of masked_lms.") mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))] return mask_labels def torch_mask_tokens(self, inputs: Any, mask_labels: Any) -> tuple[Any, Any]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref. """ import torch if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" " --mlm flag if you want to use this tokenizer." ) labels = inputs.clone() # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) probability_matrix = mask_labels special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) if self.tokenizer.pad_token is not None: padding_mask = labels.eq(self.tokenizer.pad_token_id) probability_matrix.masked_fill_(padding_mask, value=0.0) masked_indices = probability_matrix.bool() labels[~masked_indices] = -100 # We only compute loss on masked tokens # mask_replace_prob% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = ( torch.bernoulli(torch.full(labels.shape, self.mask_replace_prob), generator=self.generator).bool() & masked_indices ) inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) if self.mask_replace_prob == 1 or self.random_replace_prob == 0: return inputs, labels remaining_prob = 1 - self.mask_replace_prob # scaling the random_replace_prob to the remaining probability for example if # mask_replace_prob = 0.8 and random_replace_prob = 0.1, # then random_replace_prob_scaled = 0.1 / 0.2 = 0.5 random_replace_prob_scaled = self.random_replace_prob / remaining_prob # random_replacement_prob% of the time, we replace masked input tokens with random word indices_random = ( torch.bernoulli(torch.full(labels.shape, random_replace_prob_scaled), generator=self.generator).bool() & masked_indices & ~indices_replaced ) random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long, generator=self.generator) inputs[indices_random] = random_words[indices_random] # The rest of the time ((1-random_replacement_prob-mask_replace_prob)% of the time) we keep the masked input tokens unchanged return inputs, labels def tf_mask_tokens(self, inputs: Any, mask_labels: Any) -> tuple[Any, Any]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref. """ import tensorflow as tf input_shape = tf.shape(inputs) if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" " --mlm flag if you want to use this tokenizer." ) labels = tf.identity(inputs) # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) masked_indices = tf.cast(mask_labels, tf.bool) special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels ] masked_indices = masked_indices & ~tf.cast(special_tokens_mask, dtype=tf.bool) if self.tokenizer.pad_token is not None: padding_mask = inputs == self.tokenizer.pad_token_id masked_indices = masked_indices & ~padding_mask # Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens labels = tf.where(masked_indices, inputs, -100) # mask_replace_prob% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = self.tf_bernoulli(input_shape, self.mask_replace_prob, self.generator) & masked_indices inputs = tf.where(indices_replaced, self.tokenizer.mask_token_id, inputs) if self.mask_replace_prob == 1 or self.random_replace_prob == 0: return inputs, labels remaining_prob = 1 - self.mask_replace_prob # scaling the random_replace_prob to the remaining probability for example if # mask_replace_prob = 0.8 and random_replace_prob = 0.1, # then random_replace_prob_scaled = 0.1 / 0.2 = 0.5 random_replace_prob_scaled = self.random_replace_prob / remaining_prob # random_replace_prob% of the time, we replace masked input tokens with random word indices_random = ( self.tf_bernoulli(input_shape, random_replace_prob_scaled, self.generator) & masked_indices & ~indices_replaced ) if self.generator: random_words = self.generator.uniform(input_shape, maxval=len(self.tokenizer), dtype=tf.int64) else: random_words = tf.random.uniform(input_shape, maxval=len(self.tokenizer), dtype=tf.int64) inputs = tf.where(indices_random, random_words, inputs) # The rest of the time ((1-mask_replace_prob-random_replace_prob)% of the time) we keep the masked input tokens unchanged return inputs, labels def numpy_mask_tokens(self, inputs: Any, mask_labels: Any) -> tuple[Any, Any]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref. """ if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" " --mlm flag if you want to use this tokenizer." ) labels = np.copy(inputs) # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) masked_indices = mask_labels.astype(bool) special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] masked_indices[np.array(special_tokens_mask, dtype=bool)] = 0 if self.tokenizer.pad_token is not None: padding_mask = labels == self.tokenizer.pad_token_id masked_indices[padding_mask] = 0 labels[~masked_indices] = -100 # We only compute loss on masked tokens # mask_replacement_prob% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) if self.generator: indices_replaced = ( self.generator.binomial(1, self.mask_replace_prob, size=labels.shape).astype(bool) & masked_indices ) else: indices_replaced = ( np.random.binomial(1, self.mask_replace_prob, size=labels.shape).astype(bool) & masked_indices ) inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) if self.mask_replace_prob == 1 or self.random_replace_prob == 0: return inputs, labels remaining_prob = 1 - self.mask_replace_prob # scaling the random_replace_prob to the remaining probability for example if # mask_replace_prob = 0.8 and random_replace_prob = 0.1, # then random_replace_prob_scaled = 0.1 / 0.2 = 0.5 random_replace_prob_scaled = self.random_replace_prob / remaining_prob if self.generator: indices_random = ( self.generator.binomial(1, random_replace_prob_scaled, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced ) random_words = self.generator.integers(low=0, high=len(self.tokenizer), size=labels.shape, dtype=np.int64) else: indices_random = ( np.random.binomial(1, random_replace_prob_scaled, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced ) random_words = np.random.randint(low=0, high=len(self.tokenizer), size=labels.shape, dtype=np.int64) inputs[indices_random] = random_words[indices_random] # The rest of the time ((1-mask_replace_prob-random_replace_prob)% of the time) we keep the masked input tokens unchanged return inputs, labels def tolist(x): if isinstance(x, list): return x elif hasattr(x, "numpy"): # Checks for TF tensors without needing the import x = x.numpy() return x.tolist() @dataclass class DataCollatorForSOP(DataCollatorForLanguageModeling): """ Data collator used for sentence order prediction task. - collates batches of tensors, honoring their tokenizer's pad_token - preprocesses batches for both masked language modeling and sentence order prediction """ def __init__(self, *args, **kwargs): warnings.warn( "DataCollatorForSOP is deprecated and will be removed in a future version, you can now use " "DataCollatorForLanguageModeling instead.", FutureWarning, ) def __call__(self, examples: list[dict[str, Any]]) -> dict[str, Any]: import torch from torch.nn.utils.rnn import pad_sequence input_ids = [example["input_ids"] for example in examples] input_ids = _torch_collate_batch(input_ids, self.tokenizer) input_ids, labels, attention_mask = self.mask_tokens(input_ids) token_type_ids = [example["token_type_ids"] for example in examples] # size of segment_ids varied because randomness, padding zero to the end as the original implementation token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) sop_label_list = [example["sentence_order_label"] for example in examples] sentence_order_label = torch.stack(sop_label_list) return { "input_ids": input_ids, "labels": labels, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "sentence_order_label": sentence_order_label, } def mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any]: """ Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10% original. N-gram not applied yet. """ import torch if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the" " --mlm flag if you want to use this tokenizer." ) labels = inputs.clone() # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) probability_matrix = torch.full(labels.shape, self.mlm_probability) special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) if self.tokenizer.pad_token is not None: padding_mask = labels.eq(self.tokenizer.pad_token_id) probability_matrix.masked_fill_(padding_mask, value=0.0) masked_indices = torch.bernoulli(probability_matrix).bool() # probability be `1` (masked), however in albert model attention mask `0` means masked, revert the value attention_mask = (~masked_indices).float() if self.tokenizer.pad_token is not None: attention_padding_mask = labels.eq(self.tokenizer.pad_token_id) attention_mask.masked_fill_(attention_padding_mask, value=1.0) labels[~masked_indices] = -100 # We only compute loss on masked tokens, -100 is default for CE compute # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) inputs[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels, attention_mask @dataclass class DataCollatorForPermutationLanguageModeling(DataCollatorMixin): """ Data collator used for permutation language modeling. - collates batches of tensors, honoring their tokenizer's pad_token - preprocesses batches for permutation language modeling with procedures specific to XLNet """ tokenizer: PreTrainedTokenizerBase plm_probability: float = 1 / 6 max_span_length: int = 5 # maximum length of a span of masked tokens return_tensors: str = "pt" def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: if isinstance(examples[0], Mapping): examples = [e["input_ids"] for e in examples] batch = _torch_collate_batch(examples, self.tokenizer) inputs, perm_mask, target_mapping, labels = self.torch_mask_tokens(batch) return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels} def tf_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: if isinstance(examples[0], Mapping): examples = [e["input_ids"] for e in examples] batch = _tf_collate_batch(examples, self.tokenizer) inputs, perm_mask, target_mapping, labels = self.tf_mask_tokens(batch) return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels} def numpy_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: if isinstance(examples[0], Mapping): examples = [e["input_ids"] for e in examples] batch = _numpy_collate_batch(examples, self.tokenizer) inputs, perm_mask, target_mapping, labels = self.numpy_mask_tokens(batch) return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels} def torch_mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any, Any]: """ The masked tokens to be predicted for a particular sequence are determined by the following algorithm: 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be masked 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the sequence to be processed), repeat from Step 1. """ import torch if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for permutation language modeling." " Please add a mask token if you want to use this tokenizer." ) if inputs.size(1) % 2 != 0: raise ValueError( "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see" " relevant comments in source code for details." ) labels = inputs.clone() # Creating the mask and target_mapping tensors masked_indices = torch.full(labels.shape, 0, dtype=torch.bool) target_mapping = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32) for i in range(labels.size(0)): # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). cur_len = 0 max_len = labels.size(1) while cur_len < max_len: # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) span_length = torch.randint(1, self.max_span_length + 1, (1,)).item() # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked context_length = int(span_length / self.plm_probability) # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` start_index = cur_len + torch.randint(context_length - span_length + 1, (1,)).item() masked_indices[i, start_index : start_index + span_length] = 1 # Set `cur_len = cur_len + context_length` cur_len += context_length # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether, # the i-th predict corresponds to the i-th token. target_mapping[i] = torch.eye(labels.size(1)) special_tokens_mask = torch.tensor( [self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()], dtype=torch.bool, ) masked_indices.masked_fill_(special_tokens_mask, value=0.0) if self.tokenizer.pad_token is not None: padding_mask = labels.eq(self.tokenizer.pad_token_id) masked_indices.masked_fill_(padding_mask, value=0.0) # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc. non_func_mask = ~(padding_mask | special_tokens_mask) inputs[masked_indices] = self.tokenizer.mask_token_id labels[~masked_indices] = -100 # We only compute loss on masked tokens perm_mask = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32) for i in range(labels.size(0)): # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will # determine which tokens a given token can attend to (encoded in `perm_mask`). # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation, # we assume that reused length is half of sequence length and permutation length is equal to reused length. # This requires that the sequence length be even. # Create a linear factorisation order perm_index = torch.arange(labels.size(1)) # Split this into two halves, assuming that half the sequence is reused each time perm_index = perm_index.reshape((-1, labels.size(1) // 2)).transpose(0, 1) # Permute the two halves such that they do not cross over perm_index = perm_index[torch.randperm(labels.size(1) // 2)] # Flatten this out into the desired permuted factorisation order perm_index = torch.flatten(perm_index.transpose(0, 1)) # Set the permutation indices of non-masked (non-functional) tokens to the # smallest index (-1) so that: # (1) They can be seen by all other positions # (2) They cannot see masked positions, so there won't be information leak perm_index.masked_fill_(~masked_indices[i] & non_func_mask[i], -1) # The logic for whether the i-th token can attend on the j-th token based on the factorisation order: # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token perm_mask[i] = ( perm_index.reshape((labels.size(1), 1)) <= perm_index.reshape((1, labels.size(1))) ) & masked_indices[i] return inputs.long(), perm_mask, target_mapping, labels.long() def tf_mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any, Any]: """ The masked tokens to be predicted for a particular sequence are determined by the following algorithm: 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be masked 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the sequence to be processed), repeat from Step 1. """ import tensorflow as tf if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for permutation language modeling." " Please add a mask token if you want to use this tokenizer." ) if tf.shape(inputs)[1] % 2 != 0: raise ValueError( "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see" " relevant comments in source code for details." ) labels = tf.identity(inputs) # Creating the mask and target_mapping tensors masked_indices = np.full(labels.shape.as_list(), 0, dtype=bool) labels_shape = tf.shape(labels) target_mapping = np.zeros((labels_shape[0], labels_shape[1], labels_shape[1]), dtype=np.float32) for i in range(len(labels)): # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). cur_len = 0 max_len = tf.shape(labels)[1] while cur_len < max_len: # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) span_length = randint(1, self.max_span_length + 1) # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked context_length = int(span_length / self.plm_probability) # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` start_index = cur_len + randint(0, context_length - span_length + 1) masked_indices[i, start_index : start_index + span_length] = 1 # Set `cur_len = cur_len + context_length` cur_len += context_length # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether, # the i-th predict corresponds to the i-th token. target_mapping[i] = np.eye(labels_shape[1]) masked_indices = tf.cast(tf.convert_to_tensor(masked_indices), dtype=tf.bool) target_mapping = tf.convert_to_tensor(target_mapping) special_tokens_mask = tf.convert_to_tensor( [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.numpy().tolist() ], ) special_tokens_mask = tf.cast(special_tokens_mask, dtype=tf.bool) masked_indices = masked_indices & ~special_tokens_mask if self.tokenizer.pad_token is not None: padding_mask = labels == self.tokenizer.pad_token_id masked_indices = masked_indices & ~padding_mask # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc. non_func_mask = ~(padding_mask | special_tokens_mask) inputs = tf.where(masked_indices, self.tokenizer.mask_token_id, inputs) labels = tf.where(masked_indices, labels, -100) # We only compute loss on masked tokens perm_mask = [] for i in range(len(labels)): # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will # determine which tokens a given token can attend to (encoded in `perm_mask`). # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation, # we assume that reused length is half of sequence length and permutation length is equal to reused length. # This requires that the sequence length be even. # Create a linear factorisation order # tf.range is the equivalent of torch.arange perm_index = tf.range(labels_shape[1]) # Split this into two halves, assuming that half the sequence is reused each time perm_index = tf.transpose(tf.reshape(perm_index, (-1, labels_shape[1] // 2))) # Permute the two halves such that they do not cross over perm_index = tf.random.shuffle(perm_index) # Shuffles along the first dimension # Flatten this out into the desired permuted factorisation order perm_index = tf.reshape(tf.transpose(perm_index), (-1,)) # Set the permutation indices of non-masked (non-functional) tokens to the # smallest index (-1) so that: # (1) They can be seen by all other positions # (2) They cannot see masked positions, so there won't be information leak perm_index = tf.where(~masked_indices[i] & non_func_mask[i], -1, perm_index) # The logic for whether the i-th token can attend on the j-th token based on the factorisation order: # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token perm_mask.append( (tf.reshape(perm_index, (labels_shape[1], 1)) <= tf.reshape(perm_index, (1, labels_shape[1]))) & masked_indices[i] ) perm_mask = tf.stack(perm_mask, axis=0) return tf.cast(inputs, tf.int64), tf.cast(perm_mask, tf.float32), target_mapping, tf.cast(labels, tf.int64) def numpy_mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any, Any]: """ The masked tokens to be predicted for a particular sequence are determined by the following algorithm: 0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). 1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) 2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be masked 3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` 4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the sequence to be processed), repeat from Step 1. """ if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for permutation language modeling." " Please add a mask token if you want to use this tokenizer." ) if inputs.shape[1] % 2 != 0: raise ValueError( "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see" " relevant comments in source code for details." ) labels = np.copy(inputs) # Creating the mask and target_mapping tensors masked_indices = np.full(labels.shape, 0, dtype=bool) target_mapping = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32) for i in range(labels.shape[0]): # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). cur_len = 0 max_len = labels.shape[1] while cur_len < max_len: # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) span_length = randint(1, self.max_span_length + 1) # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked context_length = int(span_length / self.plm_probability) # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` start_index = cur_len + randint(0, context_length - span_length + 1) masked_indices[i, start_index : start_index + span_length] = 1 # Set `cur_len = cur_len + context_length` cur_len += context_length # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether, # the i-th predict corresponds to the i-th token. target_mapping[i] = np.eye(labels.shape[1]) special_tokens_mask = np.array( [self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()], dtype=bool, ) masked_indices[special_tokens_mask] = 0 if self.tokenizer.pad_token is not None: padding_mask = labels == self.tokenizer.pad_token_id masked_indices[padding_mask] = 0.0 # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc. non_func_mask = ~(padding_mask | special_tokens_mask) inputs[masked_indices] = self.tokenizer.mask_token_id labels[~masked_indices] = -100 # We only compute loss on masked tokens perm_mask = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32) for i in range(labels.shape[0]): # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will # determine which tokens a given token can attend to (encoded in `perm_mask`). # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation, # we assume that reused length is half of sequence length and permutation length is equal to reused length. # This requires that the sequence length be even. # Create a linear factorisation order perm_index = np.arange(labels.shape[1]) # Split this into two halves, assuming that half the sequence is reused each time perm_index = perm_index.reshape((-1, labels.shape[1] // 2)).T # Permute the two halves such that they do not cross over np.random.shuffle(perm_index) # Flatten this out into the desired permuted factorisation order perm_index = perm_index.T.flatten() # Set the permutation indices of non-masked (non-functional) tokens to the # smallest index (-1) so that: # (1) They can be seen by all other positions # (2) They cannot see masked positions, so there won't be information leak perm_index[~masked_indices[i] & non_func_mask[i]] = -1 # The logic for whether the i-th token can attend on the j-th token based on the factorisation order: # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token perm_mask[i] = ( perm_index.reshape((labels.shape[1], 1)) <= perm_index.reshape((1, labels.shape[1])) ) & masked_indices[i] return inputs.astype(np.int64), perm_mask, target_mapping, labels.astype(np.int64) @dataclass class DataCollatorWithFlattening(DefaultDataCollator): """ Data collator used for padding free approach. Does the following: - concatenates the entire mini batch into single long sequence of shape [1, total_tokens] - uses `separator_id` to separate sequences within the concatenated `labels`, default value is -100 - no padding will be added, returns `input_ids`, `labels` and `position_ids` by default - optionally returns the kwargs contained in FlashAttentionKwargs - optionally returns seq_idx indicating which sequence each token belongs to Using `DataCollatorWithFlattening` will flatten the entire mini batch into single long sequence. Make sure your attention computation is able to handle it! """ def __init__( self, *args, return_position_ids=True, separator_id=-100, return_flash_attn_kwargs=False, return_seq_idx=False, **kwargs, ): super().__init__(*args, **kwargs) self.return_position_ids = return_position_ids self.separator_id = separator_id self.return_flash_attn_kwargs = return_flash_attn_kwargs self.return_seq_idx = return_seq_idx self._int_64_keys = {"labels", "position_ids", "input_ids"} self._batch_dim_keys = {"labels", "position_ids", "input_ids", "seq_idx"} self._py_int_keys = {"max_length_q", "max_length_k"} def __call__(self, features, return_tensors=None, separator_id=None): if return_tensors is None: return_tensors = self.return_tensors if separator_id is None: separator_id = self.separator_id is_labels_provided = "labels" in features[0] batch = {"input_ids": [], "labels": []} if self.return_position_ids: batch.update({"position_ids": []}) if self.return_seq_idx: batch.update({"seq_idx": []}) if self.return_flash_attn_kwargs: cu_seq_lens = [0] max_length = 0 for seq_idx, sample in enumerate(features): input_ids = sample["input_ids"] batch["input_ids"] += input_ids if is_labels_provided: batch["labels"] += [separator_id] + sample["labels"][1:] else: batch["labels"] += [separator_id] + input_ids[1:] if self.return_position_ids: batch["position_ids"] += list(range(len(input_ids))) if self.return_seq_idx: batch["seq_idx"] += [seq_idx for _ in range(len(input_ids))] if self.return_flash_attn_kwargs: cu_seq_lens.append(cu_seq_lens[-1] + len(input_ids)) max_length = max(max_length, len(input_ids)) if self.return_flash_attn_kwargs: batch["cu_seq_lens_q"] = batch["cu_seq_lens_k"] = cu_seq_lens batch["max_length_q"] = batch["max_length_k"] = max_length # FlashAttentionKwargs and seq_idx are expected to be int32s. if return_tensors == "pt": import torch data_cls = torch.tensor dtype_64 = torch.int64 dtype_32 = torch.int32 elif return_tensors == "np": data_cls = np.array dtype_64 = np.int64 dtype_32 = np.int32 else: raise ValueError(f'return_tensors must be one of ("pt", "np"), {return_tensors=} not suported') for k, v in batch.items(): if k in self._batch_dim_keys: v = [v] # Flash attention max_len_{q,k} are python ints if k not in self._py_int_keys: batch[k] = data_cls(v, dtype=dtype_64 if k in self._int_64_keys else dtype_32) return batch