# Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import warnings from typing import Optional, TypedDict import torch import torch.nn.functional as F from transformers.utils.import_utils import is_kernels_available from .utils import ( is_flash_attn_2_available, is_flash_attn_3_available, is_flash_attn_greater_or_equal, is_flash_attn_greater_or_equal_2_10, is_torch_npu_available, logging, ) logger = logging.get_logger(__name__) def _index_first_axis(tensor: torch.Tensor, indices: torch.Tensor) -> torch.Tensor: reshaped = tensor.contiguous().reshape(-1, *tensor.shape[2:]) return reshaped[indices] def _fa3_unpad_input(hidden_states, attention_mask, unused_mask=None): """ FA3-compatible unpad_input function. Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask. indices: (total_nnz), the indices of masked tokens from the flattened input sequence. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask. """ all_masks = (attention_mask + unused_mask) if unused_mask is not None else attention_mask seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32) used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( _index_first_axis(hidden_states, indices), indices, cu_seqlens, max_seqlen_in_batch, used_seqlens_in_batch, ) def _fa3_pad_input(hidden_states, indices, batch, seqlen): """ FA3-compatible pad_input function. Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence. batch: int, batch size for the padded sequence. seqlen: int, maximum sequence length for the padded sequence. Return: hidden_states: (batch, seqlen, ...) """ dim = hidden_states.shape[1:] output = torch.zeros((batch * seqlen), *dim, device=hidden_states.device, dtype=hidden_states.dtype) output[indices] = hidden_states return output.view(batch, seqlen, *dim) def _get_unpad_data(attention_mask: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, int]: """ Retrieves indexing data required to repad unpadded (ragged) tensors. Arguments: attention_mask (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. Return: indices (`torch.Tensor`): The indices of non-masked tokens from the flattened input sequence. cu_seqlens (`torch.Tensor`): The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). max_seqlen_in_batch (`int`): Maximum sequence length in batch. """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() # NOTE: Similar to the `.item()` in prepare_fa2_from_position_ids, with torch compile, # this might cause a graph break max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) def _upad_input( query_layer: torch.Tensor, key_layer: torch.Tensor, value_layer: torch.Tensor, attention_mask: torch.Tensor, query_length: int, unpad_input_func, ): """ Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches. This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary tensors for query, key, value tensors. Arguments: query_layer (`torch.Tensor`): Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). key_layer (`torch.Tensor`): Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). value_layer (`torch.Tensor`): Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). attention_mask (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. query_length (`int`): Target length. unpad_input_func: The function to use for unpadding the input tensors. Return: query_layer (`torch.Tensor`): Query state without padding. Shape: (total_target_length, num_heads, head_dim). key_layer (`torch.Tensor`): Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). value_layer (`torch.Tensor`): Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). indices_q (`torch.Tensor`): The indices of non-masked tokens from the flattened input target sequence. (cu_seqlens_q, cu_seqlens_k) (`tuple[int]`): The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`tuple[int]`): Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). """ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) # With static caches, the k/v states may be larger than the mask -> we need to slice them to avoid generating garbage # It's a bit of an anti-pattern, but otherwise we silently compute wrong attentions scores if key_layer.shape[1] > (seq_len := attention_mask.shape[-1]): key_layer, value_layer = key_layer[:, :seq_len, :, :], value_layer[:, :seq_len, :, :] batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = _index_first_axis(key_layer, indices_k) value_layer = _index_first_axis(value_layer, indices_k) if query_length == kv_seq_len: query_layer = _index_first_axis(query_layer, indices_k) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q, *_ = unpad_input_func(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) def _prepare_from_posids(query, key, value, position_ids): """ This function returns necessary arguments to call `flash_attn_varlen_func`. All three query, key, value states will be flattened. Cumulative lengths of each examples in the batch will be extracted from position_ids. NOTE: ideally cumulative lengths should be prepared at the data collator stage Arguments: query (`torch.Tensor`): Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). key (`torch.Tensor`): Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). value (`torch.Tensor`): Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). position_ids (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. Return: query (`torch.Tensor`): Query state without padding. Shape: (total_target_length, num_heads, head_dim). key (`torch.Tensor`): Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). value (`torch.Tensor`): Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). indices_q (`torch.Tensor`): The indices of non-masked tokens from the flattened input target sequence. (cu_seqlens_q, cu_seqlens_k) (`tuple[int]`): The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`tuple[int]`): Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). """ query = query.contiguous().view(-1, query.size(-2), query.size(-1)) key = key.contiguous().view(-1, key.size(-2), key.size(-1)) value = value.contiguous().view(-1, value.size(-2), value.size(-1)) position_ids = position_ids.flatten() indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32) cu_seq_lens = torch.cat( ( indices_q[position_ids == 0], torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32), ) ) # NOTE: With torch compile, this will cause a graph break if you don't set # `TORCHDYNAMO_CAPTURE_SCALAR_OUTPUTS=1` in the environment or call # `torch._dynamo.config.capture_scalar_outputs = True` before doing the forward pass. # This is a limitation of flash attention API, as the function `flash_attn_varlen_func` # requires `max_length_q`, `max_length_k` to be passed as `int` and not `torch.Tensor`. # https://github.com/Dao-AILab/flash-attention/blob/2dd8078adc1d9b74e315ee99718c0dea0de8eeb6/flash_attn/flash_attn_interface.py#L1423-L1424 # We should use cu_seq_lens instead of position_ids to get the max length since position_ids is not always increasing # for some models (e.g. qwen2-vl). max_length = cu_seq_lens.diff().max().item() return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length)) def _prepare_flash_attention_from_position_ids(query, key, value, position_ids): warnings.warn( "prepare_fa2_from_position_ids is deprecated, use _prepare_from_posids", FutureWarning, ) return _prepare_from_posids(query, key, value, position_ids) def fa_peft_integration_check(q, k, v, target_dtype: Optional[torch.dtype] = None): if target_dtype and q.dtype == torch.float32: logger.warning_once(f"Casting fp32 inputs back to {target_dtype} for flash-attn compatibility.") q, k, v = q.to(target_dtype), k.to(target_dtype), v.to(target_dtype) return q, k, v def _lazy_imports(impl: Optional[str]): # returns funcs and pad/unpad based on impl is_fa2 = is_flash_attn_2_available() or is_torch_npu_available() is_fa3 = is_flash_attn_3_available() if impl == "flash_attention_2" or (impl is None and is_fa2 and not is_fa3): try: from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import pad_input, unpad_input return flash_attn_func, flash_attn_varlen_func, pad_input, unpad_input, False except ImportError as e: if not globals().get("use_remote_fa2", None): use_remote_fa2 = ( input( "Unable to import the official flash attention, do you want to try to use `kernels-community/flash-attn` (trust remote code) Yes or No? " ) .strip() .lower() ) globals()["use_remote_fa2"] = use_remote_fa2 in {"yes", "y", "1"} if globals()["use_remote_fa2"]: if not is_kernels_available(): raise ImportError("You need to install kernels: `pip install kernels`") from kernels import get_kernel impl = get_kernel("kernels-community/flash-attn") pad_input, unpad_input = _fa3_pad_input, _fa3_unpad_input return ( getattr(impl, "flash_attn_func", None), getattr(impl, "flash_attn_varlen_func"), pad_input, unpad_input, True, ) else: raise ImportError( "Failed to import flash attention 2, please install it or use another implementation." ) from e if impl == "flash_attention_3" or (impl is None and is_fa3): from flash_attn_interface import flash_attn_func, flash_attn_varlen_func pad_input, unpad_input = _fa3_pad_input, _fa3_unpad_input return flash_attn_func, flash_attn_varlen_func, pad_input, unpad_input, True else: pad_input, unpad_input = _fa3_pad_input, _fa3_unpad_input return ( getattr(impl, "flash_attn_func", None), getattr(impl, "flash_attn_varlen_func"), pad_input, unpad_input, True, ) _flash_supports_window = None def is_flash_attn_available(): return is_flash_attn_3_available() or is_flash_attn_2_available() or is_torch_npu_available() def flash_attn_supports_top_left_mask(): if is_flash_attn_3_available(): return False if is_flash_attn_2_available(): return not is_flash_attn_greater_or_equal_2_10() from .integrations.npu_flash_attention import is_npu_fa2_top_left_aligned_causal_mask return is_npu_fa2_top_left_aligned_causal_mask() class FlashAttentionKwargs(TypedDict, total=False): cumulative_seqlens_q: Optional[torch.LongTensor] cumulative_seqlens_k: Optional[torch.LongTensor] def _flash_attention_forward( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: Optional[torch.Tensor], query_length: int, is_causal: bool, dropout: float = 0.0, position_ids: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, sliding_window: Optional[int] = None, use_top_left_mask: bool = False, softcap: Optional[float] = None, deterministic: Optional[bool] = None, cu_seq_lens_q: Optional[torch.LongTensor] = None, cu_seq_lens_k: Optional[torch.LongTensor] = None, max_length_q: Optional[int] = None, max_length_k: Optional[int] = None, target_dtype: Optional[torch.dtype] = None, implementation: Optional[str] = None, **kwargs, ): if not all(k in globals() for k in ("_flash_fn", "_flash_varlen_fn", "_pad_fn", "_unpad_fn", "_is_fa3")): flash_fn, flash_varlen_fn, pad_fn, unpad_fn, is_fa3 = _lazy_imports(implementation) globals()["_flash_fn"] = flash_fn globals()["_flash_varlen_fn"] = flash_varlen_fn globals()["_pad_fn"] = pad_fn globals()["_unpad_fn"] = unpad_fn globals()["_is_fa3"] = is_fa3 flash_supports_window = "window_size" in inspect.signature(flash_varlen_fn).parameters globals()["_flash_supports_window"] = flash_supports_window else: flash_fn = globals()["_flash_fn"] flash_varlen_fn = globals()["_flash_varlen_fn"] pad_fn = globals()["_pad_fn"] unpad_fn = globals()["_unpad_fn"] is_fa3 = globals()["_is_fa3"] flash_supports_window = globals()["_flash_supports_window"] causal = is_causal and not (use_top_left_mask and query_length == 1) use_sw = ( (_flash_supports_window or flash_supports_window) and sliding_window and key_states.shape[1] > sliding_window ) flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sw else {} if not is_fa3: flash_kwargs["dropout_p"] = dropout if is_flash_attn_greater_or_equal("2.4.1"): det = deterministic if deterministic is not None else os.getenv("FLASH_ATTENTION_DETERMINISTIC", "0") == "1" flash_kwargs["deterministic"] = det if softcap is not None: flash_kwargs["softcap"] = softcap query_states, key_states, value_states = fa_peft_integration_check( query_states, key_states, value_states, target_dtype ) use_mask = position_ids is not None or all( k is not None for k in [cu_seq_lens_q, cu_seq_lens_k, max_length_q, max_length_k] ) if attention_mask is not None: q, k, v, idx, (cu_q, cu_k), (mq, mk) = _upad_input( query_states, key_states, value_states, attention_mask, query_length, unpad_fn ) # TODO for now this is required to work with https://huggingface.co/kernels-community/metal-flash-sdpa/blob/main/torch-ext/metal_flash_sdpa/__init__.p if "mps" in str(q.device): cu_k = cu_k.clone() out_unpad = flash_varlen_fn( q, k, v, cu_seqlens_q=cu_q.to(torch.int32), cu_seqlens_k=cu_k.to(torch.int32), max_seqlen_q=mq, max_seqlen_k=mk, softmax_scale=softmax_scale, causal=causal, **flash_kwargs, ) if isinstance(out_unpad, tuple): out_unpad = out_unpad[0] out = pad_fn(out_unpad, idx, query_states.shape[0], query_length) elif use_mask: if cu_seq_lens_q is None or cu_seq_lens_k is None: if position_ids is None: raise ValueError( "Position ids should be passed if the attention mask is not passed and the cu_seq-lens are not passed." ) q, k, v, idx, (cu_q, cu_k), (mq, mk) = _prepare_from_posids( query_states, key_states, value_states, position_ids ) else: q = query_states.reshape(-1, query_states.size(-2), query_states.size(-1)) k = key_states.reshape(-1, key_states.size(-2), key_states.size(-1)) v = value_states.reshape(-1, value_states.size(-2), value_states.size(-1)) mq, mk = max_length_q, max_length_k cu_q, cu_k = cu_seq_lens_q, cu_seq_lens_k if "mps" in str(q.device): cu_k = cu_k.clone() out = flash_varlen_fn( q, k, v, cu_seqlens_q=cu_q.to(torch.int32), cu_seqlens_k=cu_k.to(torch.int32), max_seqlen_q=mq, max_seqlen_k=mk, softmax_scale=softmax_scale, causal=causal, **flash_kwargs, ) if isinstance(out, tuple): out = out[0] out = out.view(query_states.shape[0], -1, out.size(-2), out.size(-1)) else: out = flash_fn( query_states, key_states, value_states, softmax_scale=softmax_scale, causal=causal, **flash_kwargs ) return out[0] if isinstance(out, tuple) else out