# coding=utf-8 # Copyright 2025 Arcee AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Arcee model.""" from transformers.utils import auto_docstring, logging from ..llama.configuration_llama import LlamaConfig from ..llama.modeling_llama import ( LlamaForCausalLM, LlamaForQuestionAnswering, LlamaForSequenceClassification, LlamaForTokenClassification, ) from ..nemotron.modeling_nemotron import NemotronMLP logger = logging.get_logger(__name__) class ArceeConfig(LlamaConfig): r""" This is the configuration class to store the configuration of a [`ArceeModel`]. It is used to instantiate an Arcee model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the AFM-4.5B-Base. Pre-trained weights are available at [arcee-ai/AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B) and were used to build the examples below. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Arcee model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ArceeModel`] hidden_size (`int`, *optional*, defaults to 2560): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 18432): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. AFM-4.5B-Base supports up to 16384 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): Padding token id. bos_token_id (`int`, *optional*, defaults to 128000): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 128001): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'yarn'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. head_dim (`int`, *optional*): The attention head dimension. If None, it will default to hidden_size // num_attention_heads ```python >>> from transformers import ArceeModel, ArceeConfig >>> # Initializing an Arcee AFM-4.5B-Base style configuration >>> configuration = ArceeConfig() >>> # Initializing a model from the AFM-4.5B-Base style configuration >>> model = ArceeModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "arcee" base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } def __init__( self, vocab_size=32000, hidden_size=2560, intermediate_size=18432, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="relu2", max_position_embeddings=4096, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=128000, eos_token_id=128001, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, head_dim=None, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, num_key_value_heads=num_key_value_heads, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, initializer_range=initializer_range, rms_norm_eps=rms_norm_eps, use_cache=use_cache, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, rope_theta=rope_theta, rope_scaling=rope_scaling, attention_bias=attention_bias, attention_dropout=attention_dropout, mlp_bias=mlp_bias, head_dim=head_dim, **kwargs, ) del self.pretraining_tp class ArceeMLP(NemotronMLP): pass @auto_docstring(checkpoint="arcee-ai/AFM-4.5B") class ArceeForCausalLM(LlamaForCausalLM): pass @auto_docstring(checkpoint="arcee-ai/AFM-4.5B") class ArceeForSequenceClassification(LlamaForSequenceClassification): pass @auto_docstring(checkpoint="arcee-ai/AFM-4.5B") class ArceeForQuestionAnswering(LlamaForQuestionAnswering): pass @auto_docstring(checkpoint="arcee-ai/AFM-4.5B") class ArceeForTokenClassification(LlamaForTokenClassification): pass __all__ = [ "ArceeConfig", "ArceeForCausalLM", "ArceeForQuestionAnswering", "ArceeForSequenceClassification", "ArceeForTokenClassification", "ArceeModel", # noqa: F822 "ArceePreTrainedModel", # noqa: F822 ]