# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoProcessor class.""" import importlib import inspect import json import warnings from collections import OrderedDict # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...image_processing_utils import ImageProcessingMixin from ...processing_utils import ProcessorMixin from ...tokenization_utils import TOKENIZER_CONFIG_FILE from ...utils import FEATURE_EXTRACTOR_NAME, PROCESSOR_NAME, VIDEO_PROCESSOR_NAME, cached_file, logging from ...video_processing_utils import BaseVideoProcessor from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) from .feature_extraction_auto import AutoFeatureExtractor from .image_processing_auto import AutoImageProcessor from .tokenization_auto import AutoTokenizer logger = logging.get_logger(__name__) PROCESSOR_MAPPING_NAMES = OrderedDict( [ ("aimv2", "CLIPProcessor"), ("align", "AlignProcessor"), ("altclip", "AltCLIPProcessor"), ("aria", "AriaProcessor"), ("aya_vision", "AyaVisionProcessor"), ("bark", "BarkProcessor"), ("blip", "BlipProcessor"), ("blip-2", "Blip2Processor"), ("bridgetower", "BridgeTowerProcessor"), ("chameleon", "ChameleonProcessor"), ("chinese_clip", "ChineseCLIPProcessor"), ("clap", "ClapProcessor"), ("clip", "CLIPProcessor"), ("clipseg", "CLIPSegProcessor"), ("clvp", "ClvpProcessor"), ("colpali", "ColPaliProcessor"), ("colqwen2", "ColQwen2Processor"), ("deepseek_vl", "DeepseekVLProcessor"), ("deepseek_vl_hybrid", "DeepseekVLHybridProcessor"), ("dia", "DiaProcessor"), ("emu3", "Emu3Processor"), ("evolla", "EvollaProcessor"), ("flava", "FlavaProcessor"), ("fuyu", "FuyuProcessor"), ("gemma3", "Gemma3Processor"), ("gemma3n", "Gemma3nProcessor"), ("git", "GitProcessor"), ("glm4v", "Glm4vProcessor"), ("got_ocr2", "GotOcr2Processor"), ("granite_speech", "GraniteSpeechProcessor"), ("grounding-dino", "GroundingDinoProcessor"), ("groupvit", "CLIPProcessor"), ("hubert", "Wav2Vec2Processor"), ("idefics", "IdeficsProcessor"), ("idefics2", "Idefics2Processor"), ("idefics3", "Idefics3Processor"), ("instructblip", "InstructBlipProcessor"), ("instructblipvideo", "InstructBlipVideoProcessor"), ("internvl", "InternVLProcessor"), ("janus", "JanusProcessor"), ("kosmos-2", "Kosmos2Processor"), ("kyutai_speech_to_text", "KyutaiSpeechToTextProcessor"), ("layoutlmv2", "LayoutLMv2Processor"), ("layoutlmv3", "LayoutLMv3Processor"), ("llama4", "Llama4Processor"), ("llava", "LlavaProcessor"), ("llava_next", "LlavaNextProcessor"), ("llava_next_video", "LlavaNextVideoProcessor"), ("llava_onevision", "LlavaOnevisionProcessor"), ("markuplm", "MarkupLMProcessor"), ("mctct", "MCTCTProcessor"), ("mgp-str", "MgpstrProcessor"), ("mistral3", "PixtralProcessor"), ("mllama", "MllamaProcessor"), ("moonshine", "Wav2Vec2Processor"), ("oneformer", "OneFormerProcessor"), ("owlv2", "Owlv2Processor"), ("owlvit", "OwlViTProcessor"), ("paligemma", "PaliGemmaProcessor"), ("perception_lm", "PerceptionLMProcessor"), ("phi4_multimodal", "Phi4MultimodalProcessor"), ("pix2struct", "Pix2StructProcessor"), ("pixtral", "PixtralProcessor"), ("pop2piano", "Pop2PianoProcessor"), ("qwen2_5_omni", "Qwen2_5OmniProcessor"), ("qwen2_5_vl", "Qwen2_5_VLProcessor"), ("qwen2_audio", "Qwen2AudioProcessor"), ("qwen2_vl", "Qwen2VLProcessor"), ("sam", "SamProcessor"), ("sam_hq", "SamHQProcessor"), ("seamless_m4t", "SeamlessM4TProcessor"), ("sew", "Wav2Vec2Processor"), ("sew-d", "Wav2Vec2Processor"), ("shieldgemma2", "ShieldGemma2Processor"), ("siglip", "SiglipProcessor"), ("siglip2", "Siglip2Processor"), ("smolvlm", "SmolVLMProcessor"), ("speech_to_text", "Speech2TextProcessor"), ("speech_to_text_2", "Speech2Text2Processor"), ("speecht5", "SpeechT5Processor"), ("trocr", "TrOCRProcessor"), ("tvlt", "TvltProcessor"), ("tvp", "TvpProcessor"), ("udop", "UdopProcessor"), ("unispeech", "Wav2Vec2Processor"), ("unispeech-sat", "Wav2Vec2Processor"), ("video_llava", "VideoLlavaProcessor"), ("vilt", "ViltProcessor"), ("vipllava", "LlavaProcessor"), ("vision-text-dual-encoder", "VisionTextDualEncoderProcessor"), ("voxtral", "VoxtralProcessor"), ("wav2vec2", "Wav2Vec2Processor"), ("wav2vec2-bert", "Wav2Vec2Processor"), ("wav2vec2-conformer", "Wav2Vec2Processor"), ("wavlm", "Wav2Vec2Processor"), ("whisper", "WhisperProcessor"), ("xclip", "XCLIPProcessor"), ] ) PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, PROCESSOR_MAPPING_NAMES) def processor_class_from_name(class_name: str): for module_name, processors in PROCESSOR_MAPPING_NAMES.items(): if class_name in processors: module_name = model_type_to_module_name(module_name) module = importlib.import_module(f".{module_name}", "transformers.models") try: return getattr(module, class_name) except AttributeError: continue for processor in PROCESSOR_MAPPING._extra_content.values(): if getattr(processor, "__name__", None) == class_name: return processor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. main_module = importlib.import_module("transformers") if hasattr(main_module, class_name): return getattr(main_module, class_name) return None class AutoProcessor: r""" This is a generic processor class that will be instantiated as one of the processor classes of the library when created with the [`AutoProcessor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise OSError( "AutoProcessor is designed to be instantiated " "using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(PROCESSOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the processor classes of the library from a pretrained model vocabulary. The processor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible): List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a processor files saved using the `save_pretrained()` method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `hf auth login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final feature extractor object. If `True`, then this functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (`dict[str, Any]`, *optional*): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the `return_unused_kwargs` keyword parameter. Passing `token=True` is required when you want to use a private model. Examples: ```python >>> from transformers import AutoProcessor >>> # Download processor from huggingface.co and cache. >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") >>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*) >>> # processor = AutoProcessor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True processor_class = None processor_auto_map = None # First, let's see if we have a processor or preprocessor config. # Filter the kwargs for `cached_file`. cached_file_kwargs = { key: kwargs[key] for key in inspect.signature(cached_file).parameters.keys() if key in kwargs } # We don't want to raise cached_file_kwargs.update( { "_raise_exceptions_for_gated_repo": False, "_raise_exceptions_for_missing_entries": False, "_raise_exceptions_for_connection_errors": False, } ) # Let's start by checking whether the processor class is saved in a processor config processor_config_file = cached_file(pretrained_model_name_or_path, PROCESSOR_NAME, **cached_file_kwargs) if processor_config_file is not None: config_dict, _ = ProcessorMixin.get_processor_dict(pretrained_model_name_or_path, **kwargs) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] if processor_class is None: # If not found, let's check whether the processor class is saved in an image processor config preprocessor_config_file = cached_file( pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **cached_file_kwargs ) if preprocessor_config_file is not None: config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] # Saved as video processor if preprocessor_config_file is None: preprocessor_config_file = cached_file( pretrained_model_name_or_path, VIDEO_PROCESSOR_NAME, **cached_file_kwargs ) if preprocessor_config_file is not None: config_dict, _ = BaseVideoProcessor.get_video_processor_dict( pretrained_model_name_or_path, **kwargs ) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] # Saved as feature extractor if preprocessor_config_file is None: preprocessor_config_file = cached_file( pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **cached_file_kwargs ) if preprocessor_config_file is not None and processor_class is None: config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict( pretrained_model_name_or_path, **kwargs ) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] if processor_class is None: # Next, let's check whether the processor class is saved in a tokenizer tokenizer_config_file = cached_file( pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **cached_file_kwargs ) if tokenizer_config_file is not None: with open(tokenizer_config_file, encoding="utf-8") as reader: config_dict = json.load(reader) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] if processor_class is None: # Otherwise, load config, if it can be loaded. if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # And check if the config contains the processor class. processor_class = getattr(config, "processor_class", None) if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map: processor_auto_map = config.auto_map["AutoProcessor"] if processor_class is not None: processor_class = processor_class_from_name(processor_class) has_remote_code = processor_auto_map is not None has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING if has_remote_code: if "--" in processor_auto_map: upstream_repo = processor_auto_map.split("--")[0] else: upstream_repo = None trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo ) if has_remote_code and trust_remote_code: processor_class = get_class_from_dynamic_module( processor_auto_map, pretrained_model_name_or_path, **kwargs ) _ = kwargs.pop("code_revision", None) processor_class.register_for_auto_class() return processor_class.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) elif processor_class is not None: return processor_class.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # Last try: we use the PROCESSOR_MAPPING. elif type(config) in PROCESSOR_MAPPING: return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs) # At this stage, there doesn't seem to be a `Processor` class available for this model, so let's try a # tokenizer. try: return AutoTokenizer.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: try: return AutoImageProcessor.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: pass try: return AutoFeatureExtractor.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: pass raise ValueError( f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a " "tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains " "the files of at least one of those processing classes." ) @staticmethod def register(config_class, processor_class, exist_ok=False): """ Register a new processor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. processor_class ([`ProcessorMixin`]): The processor to register. """ PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok) __all__ = ["PROCESSOR_MAPPING", "AutoProcessor"]