# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/dia/modular_dia.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_dia.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 The Nari Labs and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Union import torch from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from ...integrations import use_kernel_forward_from_hub from ...masking_utils import create_causal_mask from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( TransformersKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, is_torchdynamo_compiling, logging, ) from .configuration_dia import DiaConfig, DiaDecoderConfig, DiaEncoderConfig from .generation_dia import DiaGenerationMixin if is_torch_flex_attn_available(): from ...integrations.flex_attention import make_flex_block_causal_mask logger = logging.get_logger(__name__) @auto_docstring class DiaPreTrainedModel(PreTrainedModel): config: DiaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True main_input_name = "input_ids" _no_split_modules = ["DiaEncoderLayer", "DiaDecoderLayer"] class DiaMultiChannelEmbedding(nn.Module): """In order to efficiently compute the audio embedding from the 9 different channels, we vectorize the embedding process by using a single embedding layer and an offset. Example: - num_embeds = 4 - vocab_size = 8 - num_channels = 3 We would have offsets = [0, 8, 16] If audio_codes = [0, 1, 2, 3], [1, 3, 4, 7], [5, 6, 7, 8], then tokens = audio_codes + offsets = [0, 1, 2, 3, 9, 11, 12, 15, 21, 22, 23, 24] This allows us to use a single embedding layer for all channels. """ def __init__(self, config: DiaDecoderConfig): super().__init__() self.embed = nn.Embedding(config.vocab_size * config.num_channels, config.hidden_size) self.hidden_size = config.hidden_size self.num_channels = config.num_channels offsets = torch.arange(config.num_channels, dtype=torch.long) * config.vocab_size # (C,) self.register_buffer("offsets", offsets, persistent=False) def forward(self, audio_codes: torch.Tensor) -> torch.Tensor: tokens = (audio_codes + self.offsets.to(audio_codes.device)).squeeze(1) embeds = self.embed(tokens).view(tokens.shape[0], audio_codes.shape[1], -1, self.hidden_size) return embeds.sum(dim=2) class DiaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.activation_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: up_states = self.gate_up_proj(hidden_states) gate, up_states = up_states.chunk(2, dim=-1) up_states = up_states * self.activation_fn(gate) return self.down_proj(up_states) @use_kernel_forward_from_hub("RMSNorm") class DiaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ DiaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class DiaRotaryEmbedding(nn.Module): def __init__(self, config: DiaConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class DiaSelfAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Union[DiaEncoderConfig, DiaDecoderConfig], layer_idx: int, is_causal: bool = False): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.num_heads = self.config.num_attention_heads self.num_key_value_heads = self.config.num_key_value_heads or self.num_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.head_dim = getattr(config, "head_dim", config.hidden_size // self.num_heads) self.scaling = 1 self.attention_dropout = 0.0 self.is_causal = is_causal self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, torch.Tensor]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class DiaCrossAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: DiaDecoderConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.cross_hidden_size = config.cross_hidden_size self.num_heads = self.config.cross_num_attention_heads self.num_key_value_heads = self.config.cross_num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.head_dim = config.cross_head_dim self.scaling = 1 self.attention_dropout = 0.0 self.is_causal = False self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.cross_hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.cross_hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, cross_attention_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[EncoderDecoderCache] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) cross_shape = (*cross_attention_states.shape[:-1], -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) is_updated = past_key_values.is_updated.get(self.layer_idx) if past_key_values is not None else False if past_key_values is not None and is_updated: # reuse k,v, cross_attentions key_states = past_key_values.cross_attention_cache.layers[self.layer_idx].keys value_states = past_key_values.cross_attention_cache.layers[self.layer_idx].values else: key_states = self.k_proj(cross_attention_states).view(cross_shape).transpose(1, 2) value_states = self.v_proj(cross_attention_states).view(cross_shape).transpose(1, 2) if past_key_values is not None: # save all states to the cache key_states, value_states = past_key_values.cross_attention_cache.update( key_states, value_states, self.layer_idx, ) # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls past_key_values.is_updated[self.layer_idx] = True attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape((*input_shape, -1)).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class DiaEncoderLayer(GradientCheckpointingLayer): def __init__(self, config: DiaEncoderConfig, layer_idx: int): super().__init__() self.pre_sa_norm = DiaRMSNorm(config.hidden_size, eps=config.norm_eps) self.self_attention = DiaSelfAttention(config, layer_idx, is_causal=False) self.post_sa_norm = DiaRMSNorm(config.hidden_size, eps=config.norm_eps) self.mlp = DiaMLP(config) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC attention_mask: Optional[torch.Tensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: residual = hidden_states normed_states = self.pre_sa_norm(hidden_states) self_attn_output, self_attn_weights = self.self_attention( normed_states, position_embeddings=position_embeddings, attention_mask=attention_mask, **kwargs, ) hidden_states = residual + self_attn_output residual = hidden_states normed_states = self.post_sa_norm(hidden_states) mlp_out = self.mlp(normed_states) hidden_states = residual + mlp_out return hidden_states, self_attn_weights class DiaEncoder(DiaPreTrainedModel): def __init__(self, config: DiaEncoderConfig): super().__init__(config) self.config = config self.embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList( [DiaEncoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = DiaRMSNorm(config.hidden_size, eps=config.norm_eps) self.rotary_embeddings = DiaRotaryEmbedding(config) @auto_docstring @can_return_tuple def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, **kwargs: Unpack[FlashAttentionKwargs], ) -> Union[BaseModelOutput, tuple]: hidden_states = self.embedding(input_ids) # RoPE # Note: We expect right padding and hence always generate # the position ids on the fly to reduce preparation overhead position_ids = torch.arange(input_ids.shape[-1], device=input_ids.device)[None, :] position_embeddings = self.rotary_embeddings(hidden_states, position_ids) attention_mask = self._update_full_mask( attention_mask, hidden_states, ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, **kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.norm(hidden_states) if output_hidden_states: encoder_states += (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_full_mask def _update_full_mask( self, attention_mask: Union[torch.Tensor, None], inputs_embeds: torch.Tensor, ): if attention_mask is not None: if self.config._attn_implementation == "flash_attention_2": attention_mask = attention_mask if 0 in attention_mask else None elif self.config._attn_implementation == "sdpa": # output_attentions=True & head_mask can not be supported when using SDPA, fall back to # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) elif self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask, is_causal=False) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) return attention_mask class DiaDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: DiaDecoderConfig, layer_idx: int): super().__init__() self.embed_dim = config.hidden_size self.self_attention = DiaSelfAttention(config, layer_idx, is_causal=True) self.cross_attention = DiaCrossAttention(config, layer_idx) self.pre_sa_norm = DiaRMSNorm(config.hidden_size, eps=config.norm_eps) self.pre_ca_norm = DiaRMSNorm(config.hidden_size, eps=config.norm_eps) self.pre_mlp_norm = DiaRMSNorm(config.hidden_size, eps=config.norm_eps) self.mlp = DiaMLP(config) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[EncoderDecoderCache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: self_attn_cache = past_key_values if isinstance(self_attn_cache, EncoderDecoderCache): self_attn_cache = self_attn_cache.self_attention_cache residual = hidden_states normed_states = self.pre_sa_norm(hidden_states) self_attn_output, self_attn_weights = self.self_attention( normed_states, position_embeddings, attention_mask, # Needs to be an arg in order to function properly # on inplace operations to be carried (e.g. compile) self_attn_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + self_attn_output residual = hidden_states normed_states = self.pre_ca_norm(hidden_states) cross_states, cross_attn_weights = self.cross_attention( normed_states, encoder_hidden_states, attention_mask=encoder_attention_mask, past_key_values=past_key_values, **kwargs, ) hidden_states = residual + cross_states residual = hidden_states normed_states = self.pre_mlp_norm(hidden_states) mlp_out = self.mlp(normed_states) hidden_states = residual + mlp_out return hidden_states, self_attn_weights, cross_attn_weights class DiaDecoder(DiaPreTrainedModel): """Transformer Decoder Stack using DenseGeneral.""" def __init__(self, config: DiaDecoderConfig): super().__init__(config) self.num_channels = config.num_channels self.vocab_size = config.vocab_size self.embeddings = DiaMultiChannelEmbedding(config) self.rotary_embeddings = DiaRotaryEmbedding(config) self.layers = nn.ModuleList( [DiaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = DiaRMSNorm(config.hidden_size, eps=config.norm_eps) @auto_docstring @can_return_tuple def forward( self, input_ids: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[EncoderDecoderCache] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[BaseModelOutputWithPastAndCrossAttentions, tuple]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`): The original `decoder_input_ids` in 3D shape to facilitate more efficient computations. [What are input IDs?](../glossary#input-ids) """ batch_size, seq_length = input_ids.size()[:-1] past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + seq_length, device=input_ids.device ) if position_ids is None: position_ids = cache_position[None, :] # RoPE hidden_states = self.embeddings(input_ids) position_embeddings = self.rotary_embeddings(hidden_states, position_ids) if attention_mask is None and not is_torchdynamo_compiling(): # required mask seq length can be calculated via length of past cache mask_seq_length = past_key_values_length + seq_length attention_mask = torch.ones(batch_size, mask_seq_length, device=input_ids.device) attention_mask = create_causal_mask( config=self.config, input_embeds=hidden_states, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) encoder_attention_mask = self._update_cross_attn_mask( encoder_hidden_states, encoder_attention_mask, hidden_states.shape[:2], hidden_states, ) all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, position_embeddings, attention_mask, encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns = all_self_attns + (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_cross_attn_mask def _update_cross_attn_mask( self, encoder_hidden_states: Union[torch.Tensor, None], encoder_attention_mask: Union[torch.Tensor, None], input_shape: torch.Size, inputs_embeds: torch.Tensor, ): # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: if self.config._attn_implementation == "flash_attention_2": encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None elif self.config._attn_implementation == "sdpa": # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1], ) elif self.config._attn_implementation == "flex_attention": if isinstance(encoder_attention_mask, torch.Tensor): encoder_attention_mask = make_flex_block_causal_mask( encoder_attention_mask, query_length=input_shape[-1], is_causal=False, ) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) return encoder_attention_mask @auto_docstring( custom_intro=""" The bare Dia model outputting raw hidden-states without any specific head on top. """ ) class DiaModel(DiaPreTrainedModel): def __init__(self, config: DiaConfig): super().__init__(config) self.config = config self.encoder = DiaEncoder(config.encoder_config) self.decoder = DiaDecoder(config.decoder_config) self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @auto_docstring @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_position_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Union[BaseModelOutput, tuple]] = None, past_key_values: Optional[EncoderDecoderCache] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[tuple, Seq2SeqModelOutput]: r""" decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length) or (batch_size, target_sequence_length, num_codebooks)`, *optional*): 1. (batch_size * num_codebooks, target_sequence_length): corresponds to the general use case where the audio input codebooks are flattened into the batch dimension. This also aligns with the flat- tened audio logits which are used to calculate the loss. 2. (batch_size, sequence_length, num_codebooks): corresponds to the internally used shape of Dia to calculate embeddings and subsequent steps more efficiently. If no `decoder_input_ids` are provided, it will create a tensor of `bos_token_id` with shape `(batch_size, 1, num_codebooks)`. Indices can be obtained using the [`DiaProcessor`]. See [`DiaProcessor.__call__`] for more details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_position_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`): Indices of positions of each input sequence tokens in the position embeddings. Used to calculate the position embeddings up to `config.decoder_config.max_position_embeddings`. [What are position IDs?](../glossary#position-ids) """ if input_ids is None and encoder_outputs is None: raise ValueError( "You should either provide text ids or the cached text encodings. Neither has been found." ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if self.is_gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache and past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache()) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, **kwargs, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput elif not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # On default we initialize the decoder with bos tokens if nothing has been provided bsz, seq_len, channels = (encoder_outputs[0].shape[0], -1, self.config.decoder_config.num_channels) if decoder_input_ids is None: decoder_input_ids = torch.full( size=(bsz, 1, channels), fill_value=self.config.bos_token_id, device=self.device ) # Ensure 3D if decoder_input_ids.ndim == 2: decoder_input_ids = decoder_input_ids.reshape(bsz, channels, seq_len).transpose(1, 2) decoder_outputs = self.decoder( input_ids=decoder_input_ids, position_ids=decoder_position_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, cache_position=cache_position, **kwargs, ) return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs[0], encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @auto_docstring( custom_intro=""" The Dia model consisting of a (byte) text encoder and audio decoder with a prediction head on top. """ ) class DiaForConditionalGeneration(DiaPreTrainedModel, DiaGenerationMixin): base_model_prefix = "model" def __init__(self, config: DiaConfig): super().__init__(config) self.config = config self.model = DiaModel(config) self.num_channels = config.decoder_config.num_channels self.vocab_size = config.decoder_config.vocab_size self.logits_dense = nn.Linear( config.decoder_config.hidden_size, (self.num_channels * self.vocab_size), bias=False ) self.loss_type = "ForMaskedLM" # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() @auto_docstring @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_position_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Union[BaseModelOutput, tuple]] = None, past_key_values: Optional[EncoderDecoderCache] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[tuple, Seq2SeqLMOutput]: r""" decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length) or (batch_size, target_sequence_length, num_codebooks)`, *optional*): 1. (batch_size * num_codebooks, target_sequence_length): corresponds to the general use case where the audio input codebooks are flattened into the batch dimension. This also aligns with the flat- tened audio logits which are used to calculate the loss. 2. (batch_size, sequence_length, num_codebooks): corresponds to the internally used shape of Dia to calculate embeddings and subsequent steps more efficiently. If no `decoder_input_ids` are provided, it will create a tensor of `bos_token_id` with shape `(batch_size, 1, num_codebooks)`. Indices can be obtained using the [`DiaProcessor`]. See [`DiaProcessor.__call__`] for more details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_position_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`): Indices of positions of each input sequence tokens in the position embeddings. Used to calculate the position embeddings up to `config.decoder_config.max_position_embeddings`. [What are position IDs?](../glossary#position-ids) labels (`torch.LongTensor` of shape `(batch_size * num_codebooks,)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.decoder_config.vocab_size - 1]` or -100. Tokens with indices set to `-100` are ignored (masked). """ outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_position_ids=decoder_position_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **kwargs, ) last_hidden_state = outputs[0] batch_size = last_hidden_state.shape[0] # 3D <-> 2D makes it necessary to prioritize channel dim audio_logits = ( self.logits_dense(last_hidden_state) .view((batch_size, -1, self.num_channels, self.vocab_size)) .transpose(1, 2) .contiguous() .view(batch_size * self.num_channels, -1, self.vocab_size) ) loss = None if labels is not None: loss = self.loss_function(logits=audio_logits, labels=labels, vocab_size=self.vocab_size, **kwargs) return Seq2SeqLMOutput( loss=loss, logits=audio_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) __all__ = ["DiaModel", "DiaPreTrainedModel", "DiaForConditionalGeneration"]