# coding=utf-8 # Copyright 2025 Westlake Representational Learning Lab (Fajie Yuan Lab) team and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evolla model configuration""" from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation from ...utils import logging logger = logging.get_logger(__name__) class SaProtConfig(PretrainedConfig): r"""This is the configuration class to store the configuration of a [`EvollaSaProtProteinEncoder`]. It is used to instantiate a SaProt model according to the specified arguments, defining the model architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 446): Vocabulary size of the protein sequence model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`EvollaModel`]. mask_token_id (`int`, *optional*, defaults to 4): The id of the *mask* token in the protein sequence model. pad_token_id (`int`, *optional*, defaults to 1): The id of the *padding* token in the protein sequence model. hidden_size (`int`, *optional*, defaults to 1280): Dimensionality of the protein sequence model layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 33): Number of hidden layers in the protein sequence model. num_attention_heads (`int`, *optional*, defaults to 20): Number of attention heads for each attention layer in the protein sequence model. intermediate_size (`int`, *optional*, defaults to 5120): Dimensionality of the intermediate layers in the protein sequence model. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the hidden layers in the protein sequence model. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in the protein sequence model. max_position_embeddings (`int`, *optional*, defaults to 1026): The maximum sequence length that the protein sequence model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon value for the layer normalization layer in the protein sequence model. position_embedding_type (`str`, *optional*, defaults to `"rotary"`): The type of position embedding to use in the protein sequence model. Currently only `"rotary"` is supported. emb_layer_norm_before (`bool`, *optional*, defaults to `False`): Whether to apply layer normalization before the position embedding in the protein sequence model. token_dropout (`bool`, *optional*, defaults to `True`): Whether to apply dropout to the tokens in the protein sequence model.""" def __init__( self, vocab_size=446, mask_token_id=4, pad_token_id=1, hidden_size=1280, num_hidden_layers=33, num_attention_heads=20, intermediate_size=5120, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1026, initializer_range=0.02, layer_norm_eps=1e-05, position_embedding_type="rotary", use_cache=True, emb_layer_norm_before=False, token_dropout=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.emb_layer_norm_before = emb_layer_norm_before self.token_dropout = token_dropout class EvollaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`EvollaModel`]. It is used to instantiate an Evolla model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Evolla-10B. e.g. [westlake-repl/Evolla-10B-hf](https://huggingface.co/westlake-repl/Evolla-10B-hf) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: protein_encoder_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`SaProtConfig`]. vocab_size (`int`, *optional*, defaults to 128256): Vocabulary size of the Evolla llama model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`EvollaModel`]. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the llama layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 14336): Dimensionality of the intermediate layers in the llama model. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the llama model. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the llama model. num_key_value_heads (`int`, *optional*, defaults to 8): Number of key-value pairs for each attention layer in the llama model. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the llama model. If string, `"gelu"`, `"relu"`, `"selu"` and `"silu"` are supported. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon value for the RMS-norm layer in the llama model. rope_theta (`float`, *optional*, defaults to 500000.0): The threshold value for the RoPE layer in the llama model. rope_scaling (`float`, *optional*): The scaling factor for the RoPE layer in the llama model. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the attention layer. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention layer. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the MLP layer. aligner_ffn_mult (`int`, *optional*, defaults to 4): The FFN multiplier for the aligner layer. aligner_enable_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the aligner layer. aligner_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in the aligner layer. aligner_num_add_layers (`int`, *optional*, defaults to 8): The number of additional layers for the aligner layer. resampler_depth (`int`, *optional*, defaults to 6): The depth of the resampler layer in the llama model. resampler_dim_head (`int`, *optional*, defaults to 64): The dimension of the heads in the resampler layer in the llama model. resampler_heads (`int`, *optional*, defaults to 8): The number of heads in the resampler layer in the llama model. resampler_num_latents (`int`, *optional*, defaults to 64): The number of latents in the resampler layer in the llama model. resampler_ff_mult (`int`, *optional*, defaults to 4): The FFN multiplier for the resampler layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. pad_token_id (`int`, *optional*): The id of the *padding* token. bos_token_id (`int`, *optional*, defaults to 128000): The id of the *beginning-of-sequence* token. eos_token_id (`int`, *optional*, defaults to 128009): The id of the *end-of-sequence* token. use_cache (`bool`, *optional*, defaults to `False`): Whether or not the model should return the last key/values attentions (not used by all models). tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to tie the input and output word embeddings. Example: ```python >>> from transformers import EvollaModel, EvollaConfig >>> # Initializing a Evolla evolla-10b style configuration >>> configuration = EvollaConfig() >>> # Initializing a model from the evolla-10b style configuration >>> model = EvollaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "EvollaModel" sub_configs = {"protein_encoder_config": SaProtConfig} def __init__( self, protein_encoder_config=None, vocab_size=128256, # llama vocab size hidden_size=4096, # llama hidden size intermediate_size=14336, # llama intermediate size num_hidden_layers=32, # llama num layers num_attention_heads=32, # llama num heads num_key_value_heads=8, # llama num key-value heads hidden_act="silu", # llama activation function max_position_embeddings=8192, # llama rope max length rms_norm_eps=1e-05, rope_theta=500000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, aligner_ffn_mult=4, aligner_enable_bias=True, aligner_attention_probs_dropout_prob=0.1, aligner_num_add_layers=8, resampler_depth=6, resampler_dim_head=64, resampler_heads=8, resampler_num_latents=64, resampler_ff_mult=4, initializer_range=0.02, pad_token_id=None, bos_token_id=128000, eos_token_id=128009, use_cache=False, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.rms_norm_eps = rms_norm_eps self.tie_word_embeddings = tie_word_embeddings self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.aligner_ffn_mult = aligner_ffn_mult self.aligner_enable_bias = aligner_enable_bias self.aligner_attention_probs_dropout_prob = aligner_attention_probs_dropout_prob self.aligner_num_add_layers = aligner_num_add_layers self.use_cache = use_cache self.initializer_range = initializer_range self.resampler_depth = resampler_depth self.resampler_dim_head = resampler_dim_head self.resampler_heads = resampler_heads self.resampler_num_latents = resampler_num_latents self.resampler_ff_mult = resampler_ff_mult self.rope_theta = rope_theta self.rope_scaling = rope_scaling # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, copy it it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) # Subconfig if protein_encoder_config is None: protein_encoder_config = {} logger.info("`protein_encoder_config` is `None`. Initializing the `SaProtConfig` with default values.") self.protein_encoder_config = SaProtConfig(**protein_encoder_config) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["EvollaConfig"]