# coding=utf-8 # Copyright 2025 Westlake Representational Learning Lab (Fajie Yuan Lab) team and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from dataclasses import dataclass from typing import Optional, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...masking_utils import create_causal_mask from ...modeling_outputs import ( BaseModelOutputWithPast, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithPast, ModelOutput, ) from ...modeling_utils import ModuleUtilsMixin, PreTrainedModel, get_parameter_dtype from ...utils import ( auto_docstring, can_return_tuple, logging, ) from ...utils.generic import check_model_inputs from ..esm.modeling_esm import ( EsmAttention, EsmEmbeddings, EsmEncoder, EsmIntermediate, EsmLayer, EsmOutput, EsmPooler, EsmSelfAttention, EsmSelfOutput, ) from ..llama.modeling_llama import ( LlamaAttention, LlamaDecoderLayer, LlamaMLP, LlamaPreTrainedModel, LlamaRMSNorm, LlamaRotaryEmbedding, ) from .configuration_evolla import EvollaConfig, SaProtConfig logger = logging.get_logger(__name__) class EvollaSaProtEmbeddings(EsmEmbeddings): def __init__(self, config): super().__init__() # remove the position_ids in EsmEmbeddings self.position_ids = None def rotate_half_esm(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb_esm(x, cos, sin): cos = cos[:, :, : x.shape[-2], :] sin = sin[:, :, : x.shape[-2], :] return (x * cos) + (rotate_half_esm(x) * sin) class EvollaSaProtRotaryEmbedding(nn.Module): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int): super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) inv_freq = inv_freq self.register_buffer("inv_freq", inv_freq) self._seq_len_cached = None self._cos_cached = None self._sin_cached = None def _update_cos_sin_tables(self, x, seq_dimension=2): seq_len = x.shape[seq_dimension] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: self._seq_len_cached = seq_len t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self._cos_cached = emb.cos()[None, None, :, :] self._sin_cached = emb.sin()[None, None, :, :] return self._cos_cached, self._sin_cached def forward(self, q: torch.Tensor, k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) return ( apply_rotary_pos_emb_esm(q, self._cos_cached, self._sin_cached), apply_rotary_pos_emb_esm(k, self._cos_cached, self._sin_cached), ) class EvollaSaProtSelfAttention(EsmSelfAttention, nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): nn.Module.__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) elif self.position_embedding_type == "rotary": self.rotary_embeddings = EvollaSaProtRotaryEmbedding(dim=self.attention_head_size) self.is_decoder = config.is_decoder self.layer_idx = layer_idx class EvollaSaProtSelfOutput(EsmSelfOutput): pass class EvollaSaProtAttention(EsmAttention): pass class EvollaSaProtIntermediate(EsmIntermediate): pass class EvollaSaProtOutput(EsmOutput): pass class EvollaSaProtLayer(EsmLayer): pass class EvollaSaProtEncoder(EsmEncoder): pass class EvollaSaProtPooler(EsmPooler): pass @auto_docstring class EvollaSaProtPreTrainedModel(PreTrainedModel): config: SaProtConfig _no_split_modules = ["EvollaSaProtLayer"] _supports_flash_attn = True def _init_weights(self, module): """Initialize the weights""" std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class EvollaSaProtProteinEncoder(EvollaSaProtPreTrainedModel): def __init__(self, config: SaProtConfig): super().__init__(config) self.embeddings = EvollaSaProtEmbeddings(config) self.encoder = EvollaSaProtEncoder(config) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @can_return_tuple def forward( self, input_ids: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, ) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) inputs_embeds = self.embeddings(input_ids=input_ids, attention_mask=attention_mask) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) encoder_outputs = self.encoder(inputs_embeds, attention_mask=extended_attention_mask) sequence_output = encoder_outputs[0] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: tuple[int], device: torch.device = None, dtype: torch.float = None ) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ if dtype is None: dtype = get_parameter_dtype(self) if not (attention_mask.dim() == 2 and self.config.is_decoder): # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder` if device is not None: warnings.warn( "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder( input_shape, attention_mask, device ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min return extended_attention_mask class EvollaSequenceCompressorAttention(nn.Module): def __init__(self, dim, dim_head=64, heads=8): super().__init__() self.scale = dim_head**-0.5 self.heads = heads inner_dim = dim_head * heads self.norm_media = nn.LayerNorm(dim) self.norm_latents = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents, mask): """ Args: x (torch.Tensor): image features shape (b, n1, D) latent (torch.Tensor): latent features shape (b, n2, D); n2: num of latent tokens """ x = self.norm_media(x) latents = self.norm_latents(latents) h = self.heads q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk( 2, dim=-1 ) # each: batch_size, max_protein_length+num_latents, dim_head*num_heads q = q.view(q.size(0), q.size(1), h, -1).permute(0, 2, 1, 3) k = k.view(k.size(0), k.size(1), h, -1).permute(0, 2, 1, 3) v = v.view(v.size(0), v.size(1), h, -1).permute(0, 2, 1, 3) q = q * self.scale # batch_size, num_heads, num_latents, dim_head # attention sim = torch.matmul(q, k.transpose(-1, -2)) sim = sim - sim.amax(dim=-1, keepdim=True).detach() bs, nh, skd, okd = sim.shape ones = torch.ones(nh, skd).to(mask.device) # Create a tensor of ones with shape (nh, skd) mask_exp = mask[:, None, None, :] ones_exp = ones[None, :, :, None] mask = mask_exp * ones_exp sim = sim.masked_fill((1 - mask).bool(), -1e4) attn = sim.softmax(dim=-1) out = torch.matmul(attn, v) out = out.permute(0, 2, 1, 3) # [batch, seq, head, features] -> [batch, seq, head*features] out = out.reshape(out.size(0), out.size(1), -1) return self.to_out(out) class EvollaFeedForward(nn.Module): def __init__(self, dim, mult=4): super().__init__() inner_dim = int(dim * mult) self.norm = nn.LayerNorm(dim) self.fc1 = nn.Linear(dim, inner_dim, bias=False) self.activation = nn.GELU() self.fc2 = nn.Linear(inner_dim, dim, bias=False) def forward(self, x): return self.fc2(self.activation(self.fc1(self.norm(x)))) class EvollaSequenceCompressorResampler(nn.Module): def __init__(self, config: EvollaConfig): super().__init__() protein_repr_dim = config.protein_encoder_config.hidden_size self.num_latents = config.resampler_num_latents self.latents = nn.Parameter(torch.randn(self.num_latents, protein_repr_dim), requires_grad=True) self.layers = nn.ModuleList([]) for _ in range(config.resampler_depth): self.layers.append( nn.ModuleList( [ EvollaSequenceCompressorAttention( dim=protein_repr_dim, dim_head=config.resampler_dim_head, heads=config.resampler_heads ), EvollaFeedForward(dim=protein_repr_dim, mult=config.resampler_ff_mult), ] ) ) self.norm = nn.LayerNorm(config.hidden_size) self.protein_projector = nn.Linear(protein_repr_dim, config.hidden_size) def forward(self, embeds, mask): b = embeds.shape[0] bs, _ = mask.shape # bs, max_protein_length latent_mask = torch.ones(bs, self.num_latents).to(mask.device) mask = torch.cat((mask, latent_mask), dim=1) # bs, max_protein_length + num_latents # blocks ones = torch.ones(b).to(self.latents.device) latents = self.latents[None] * ones.view(-1, 1, 1) # [b,n,d] latents = latents.to(embeds.dtype) for attn, ff in self.layers: latents = attn(embeds, latents, mask) + latents latents = ff(latents) + latents transformed_feature = self.protein_projector(latents) return self.norm(transformed_feature) @dataclass @auto_docstring class EvollaProteinEncoderModelOutput(ModelOutput): sequence_compressor_output: torch.FloatTensor = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None attentions: Optional[tuple[torch.FloatTensor, ...]] = None class EvollaProteinEncoder(nn.Module): def __init__(self, config: EvollaConfig): super().__init__() self.model = EvollaSaProtProteinEncoder(config=config.protein_encoder_config) self.sequence_compressor_resampler = EvollaSequenceCompressorResampler(config=config) @can_return_tuple def forward(self, input_ids: torch.LongTensor, attention_mask: torch.FloatTensor, **kwargs): protein_output = self.model(input_ids=input_ids, attention_mask=attention_mask) protein_embeds = protein_output.last_hidden_state sequence_repr = self.sequence_compressor_resampler(protein_embeds, attention_mask) return EvollaProteinEncoderModelOutput( sequence_compressor_output=sequence_repr, last_hidden_state=protein_output.last_hidden_state, ) class EvollaSequenceAlignerCrossAttention(nn.Module): def __init__( self, config, protein_encoder_dim: Optional[int] = None, structure_encoder_dim: Optional[int] = None, msa_encoder_dim: Optional[int] = None, ): super().__init__() self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.scale = self.num_attention_heads**-0.5 self.attention_head_size = int(self.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size attention_probs_dropout_prob = config.aligner_attention_probs_dropout_prob enable_bias = config.aligner_enable_bias ffn_mult = config.aligner_ffn_mult self.query = nn.Linear(self.hidden_size, self.all_head_size) if protein_encoder_dim is not None: self.key_protein = nn.Linear(protein_encoder_dim, self.all_head_size) self.value_protein = nn.Linear(protein_encoder_dim, self.all_head_size) else: self.key_protein = None self.value_protein = None if structure_encoder_dim is not None: self.key_structure = nn.Linear(structure_encoder_dim, self.all_head_size) self.value_structure = nn.Linear(structure_encoder_dim, self.all_head_size) else: self.key_structure = None self.value_structure = None if msa_encoder_dim is not None: self.key_msa = nn.Linear(msa_encoder_dim, self.all_head_size) self.value_msa = nn.Linear(msa_encoder_dim, self.all_head_size) else: self.key_msa = None self.value_msa = None self.attention_norm = EvollaRMSNorm(self.hidden_size) self.dropout = nn.Dropout(attention_probs_dropout_prob) self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=enable_bias) self.ff = EvollaFeedForward(self.hidden_size, ffn_mult) self.gate_attention = nn.Parameter(torch.tensor([0.0])) self.gate_ffw = nn.Parameter(torch.tensor([0.0])) def cross_attention( self, query_states, protein_key_value_states, structure_key_value_states, msa_key_value_states, query_attn_mask, protein_kv_attn_mask, structure_kv_attn_mask, msa_kv_attn_mask, ): """ query_states: text key_value_states: protein query_states: [bs, query_seq_len, dim] key_value_states: [bs, kv_seq_len, dim] query_attn_mask: [bs, query_seq_len] kv_attn_mask: [bs, kv_seq_len] """ # Concatenate protein and structure kv_attn_mask = [protein_kv_attn_mask, structure_kv_attn_mask, msa_kv_attn_mask] kv_attn_mask = [_ for _ in kv_attn_mask if _ is not None] if not kv_attn_mask: raise ValueError("At least one modality should be provided for cross attention.") kv_attn_mask = torch.cat(kv_attn_mask, dim=1) query_layer = self.attention_norm(query_states) # Warning: This place might cause issues, refers to # https://discuss.pytorch.org/t/cuda-error-cublas-status-not-supported-when-calling-cublasltmatmul-from-torch-nn-functional-linear/170214/13 # Solution: add `DISABLE_ADDMM_CUDA_LT=1` as environment variable # Apply linear transformation to input_query, input_key, and input_value query_layer = self.query(query_layer) # [bs, querylength, dim] if self.key_protein is not None and self.value_protein is not None: protein_key_value_states = protein_key_value_states.to(query_states) key_layer_protein = self.key_protein(protein_key_value_states) # [bs, keylength, dim] value_layer_protein = self.value_protein(protein_key_value_states) # [bs, keylength, dim] else: key_layer_protein = None value_layer_protein = None if self.key_structure is not None and self.value_structure is not None: structure_key_value_states = structure_key_value_states.to(query_states) key_layer_structure = self.key_structure(structure_key_value_states) # [bs, keylength, dim] value_layer_structure = self.value_structure(structure_key_value_states) # [bs, keylength, dim] else: key_layer_structure = None value_layer_structure = None if self.key_msa is not None and self.value_msa is not None: msa_key_value_states = msa_key_value_states.to(query_states) key_layer_msa = self.key_msa(msa_key_value_states) # [bs, keylength, dim] value_layer_msa = self.value_msa(msa_key_value_states) # [bs, keylength, dim] else: key_layer_msa = None value_layer_msa = None key_layer = [key_layer_protein, key_layer_structure, key_layer_msa] key_layer = [_ for _ in key_layer if _ is not None] key_layer = torch.cat(key_layer, dim=1) value_layer = [value_layer_protein, value_layer_structure, value_layer_msa] value_layer = [_ for _ in value_layer if _ is not None] value_layer = torch.cat(value_layer, dim=1) new_query_layer_shape = query_layer.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) query_layer = query_layer.view(*new_query_layer_shape).permute(0, 2, 1, 3) new_key_layer_shape = key_layer.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) key_layer = key_layer.view(*new_key_layer_shape).permute(0, 2, 1, 3) new_value_layer_shape = value_layer.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) value_layer = value_layer.view(*new_value_layer_shape).permute(0, 2, 1, 3) query_layer = query_layer * self.scale # attention_mask: [bs, 1, querylength, keylength] if query_attn_mask is None: query_attn_mask = torch.ones(query_states.size(0), query_states.size(1)).to(query_states.device) attention_mask = query_attn_mask[:, None, :, None] * kv_attn_mask[:, None, None, :] # Compute the scaled dot-product attention scores attn_weights = torch.matmul(query_layer, key_layer.transpose(-1, -2)) # [bs, numheads, querylength, keylength] attn_weights = attn_weights - attn_weights.amax(dim=-1, keepdim=True).detach() # To stablize score attention_scores = attn_weights.masked_fill( (1 - attention_mask).bool(), torch.finfo(attn_weights.dtype).min ) # [bs, numheads, querylength, keylength] attention_probs = nn.Softmax(dim=-1)(attention_scores) # attention_probs_dropped = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) # [bs, numheads, querylength, dim/numheads] context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) context_layer = self.out_proj(context_layer) return context_layer def forward( self, query_states, protein_kv_states, structure_kv_states, msa_kv_states, query_attn_mask, protein_kv_attn_mask=None, structure_kv_attn_mask=None, msa_kv_attn_mask=None, protein_batch_mask=None, structure_batch_mask=None, msa_batch_mask=None, past_key_value=None, ): if protein_kv_states is not None: bs, protein_kv_seq_len, dim = protein_kv_states.shape if protein_kv_attn_mask is None: protein_kv_attn_mask = ( torch.ones(bs, protein_kv_seq_len).to(protein_batch_mask.device) * protein_batch_mask.expand(size=(protein_kv_seq_len, bs)).T ).to(protein_kv_states.device) else: protein_kv_attn_mask = None if structure_kv_states is not None: bs, structure_kv_seq_len, dim = structure_kv_states.shape if structure_kv_attn_mask is None: structure_kv_attn_mask = ( torch.ones(bs, structure_kv_seq_len).to(protein_batch_mask.device) * structure_batch_mask.expand(size=(structure_kv_seq_len, bs)).T ).to(structure_kv_states.device) else: structure_kv_attn_mask = None if msa_kv_states is not None: bs, msa_kv_seq_len, dim = msa_kv_states.shape if msa_kv_attn_mask is None: msa_kv_attn_mask = ( torch.ones(bs, msa_kv_seq_len).to(protein_batch_mask.device) * msa_batch_mask.expand(size=(msa_kv_seq_len, bs)).T ).to(msa_kv_states.device) else: msa_kv_attn_mask = None hidden_states = query_states # only when there's at least one valid modality, crossattention will be performed if ( (protein_kv_states is not None and protein_kv_attn_mask.any()) or (structure_kv_states is not None and structure_kv_attn_mask.any()) or (msa_kv_states is not None and msa_kv_attn_mask.any()) ): residual = hidden_states hidden_states = self.cross_attention( query_states=hidden_states, protein_key_value_states=protein_kv_states, structure_key_value_states=structure_kv_states, msa_key_value_states=msa_kv_states, query_attn_mask=query_attn_mask, protein_kv_attn_mask=protein_kv_attn_mask, structure_kv_attn_mask=structure_kv_attn_mask, msa_kv_attn_mask=msa_kv_attn_mask, ) # [bs, query_seq_len, dim] # tanh gate hidden_states = torch.tanh(self.gate_attention) * hidden_states hidden_states = residual + hidden_states # input_query residual = hidden_states hidden_states = self.ff(hidden_states) * torch.tanh(self.gate_ffw) hidden_states = residual + hidden_states return hidden_states class EvollaRMSNorm(LlamaRMSNorm): pass class EvollaRotaryEmbedding(LlamaRotaryEmbedding): pass class EvollaMLP(LlamaMLP): pass class EvollaAttention(LlamaAttention): pass class EvollaDecoderLayer(LlamaDecoderLayer): def __init__(self, config: EvollaConfig, layer_idx: int): super().__init__(config, layer_idx) if (layer_idx + 1) % max(config.num_hidden_layers // config.aligner_num_add_layers, 1) == 0: self.adapter = EvollaSequenceAlignerCrossAttention( config, protein_encoder_dim=config.hidden_size, ) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, protein_kv_states: Optional[torch.Tensor] = None, structure_kv_states: Optional[torch.Tensor] = None, msa_kv_states: Optional[torch.Tensor] = None, protein_batch_mask: Optional[torch.Tensor] = None, structure_batch_mask: Optional[torch.Tensor] = None, msa_batch_mask: Optional[torch.Tensor] = None, query_attn_mask: Optional[torch.Tensor] = None, **kwargs, ): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states if hasattr(self, "adapter"): hidden_states = self.adapter( query_states=hidden_states, protein_kv_states=protein_kv_states, structure_kv_states=structure_kv_states, msa_kv_states=msa_kv_states, query_attn_mask=query_attn_mask, protein_batch_mask=protein_batch_mask, structure_batch_mask=structure_batch_mask, msa_batch_mask=msa_batch_mask, ) return hidden_states class EvollaPreTrainedModel(LlamaPreTrainedModel): _supports_attention_backend = False def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, EvollaRMSNorm): module.weight.data.fill_(1.0) elif isinstance(module, EvollaSequenceAlignerCrossAttention): module.gate_attention.zero_() module.gate_ffw.zero_() module.attention_norm.weight.data.fill_(1.0) elif isinstance(module, EvollaSequenceCompressorResampler): module.latents.data.normal_(mean=0.0, std=std) class EvollaModel(EvollaPreTrainedModel): def __init__(self, config: EvollaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx) self.protein_encoder = EvollaProteinEncoder(config=config) self.layers = nn.ModuleList( [ EvollaDecoderLayer( config=config, layer_idx=layer_idx, ) for layer_idx in range(config.num_hidden_layers) ] ) self.norm = EvollaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = EvollaRotaryEmbedding(config=config) self.gradient_checkpointing = getattr(config, "gradient_checkpointing", False) self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @auto_docstring @check_model_inputs def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, protein_input_ids: Optional[torch.LongTensor] = None, protein_attention_mask: Optional[torch.Tensor] = None, structure_feats: Optional[torch.FloatTensor] = None, msa_feats: Optional[torch.FloatTensor] = None, structure_batch_mask: Optional[torch.Tensor] = None, msa_batch_mask: Optional[torch.Tensor] = None, **kwargs, ) -> Union[tuple, BaseModelOutputWithPast]: r""" protein_input_ids (torch.LongTensor): The input IDs for the protein sequence in structure-aware tokens. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`. protein_attention_mask (torch.Tensor): The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`. structure_feats (torch.FloatTensor): The input IDs for purely structure-based features. Should be of shape `(batch_size, structure_seq_length, structure_feat_dim)` and type `torch.FloatTensor`. Dummy input for now. msa_feats (torch.FloatTensor): The input IDs for purely MSA-based features. Should be of shape `(batch_size, msa_seq_length, msa_feat_dim)` and type `torch.FloatTensor`. Dummy input for now. structure_batch_mask (torch.Tensor): The batch mask to decide which protein sequences are purely structure-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `structure_feats`. Dummpy input for now. msa_batch_mask (torch.Tensor): The batch mask to decide which protein sequences are purely MSA-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `msa_feats`. Dummpy input for now. """ # If not provided `protein_feats`, use the `protein_encoder` to get the protein features if protein_input_ids is not None and protein_attention_mask is not None: protein_outputs = self.protein_encoder( input_ids=protein_input_ids, attention_mask=protein_attention_mask, ) protein_feats = protein_outputs.sequence_compressor_output protein_batch_mask = torch.tensor([True] * protein_input_ids.shape[0], device=protein_input_ids.device) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, protein_kv_states=protein_feats, structure_kv_states=structure_feats, msa_kv_states=msa_feats, protein_batch_mask=protein_batch_mask, structure_batch_mask=structure_batch_mask, msa_batch_mask=msa_batch_mask, query_attn_mask=attention_mask, **kwargs, ) hidden_states = self.norm(hidden_states) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) return output class EvollaForProteinText2Text(EvollaPreTrainedModel, GenerationMixin): def __init__(self, config): super().__init__(config) self.model = EvollaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): return self.model.set_input_embeddings(value) @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, # text input ids attention_mask: Optional[torch.Tensor] = None, # text attention mask inputs_embeds: Optional[torch.FloatTensor] = None, # text input embeddings labels: Optional[torch.LongTensor] = None, protein_input_ids: torch.LongTensor = None, protein_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, **kwargs, ): r""" protein_input_ids (torch.LongTensor): The input IDs for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`. protein_attention_mask (torch.Tensor): The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`. Example: ```python >>> from transformers import EvollaProcessor, EvollaForProteinText2Text >>> model = EvollaForProteinText2Text.from_pretrained("westlake/Evolla-10B-hf") >>> processor = EvollaProcessor.from_pretrained("westlake/Evolla-10B-hf") >>> protein_information = { "aa_seq": "your amino acid sequence", "foldseek": "your foldseek sequence", } >>> question = "What is the function of this protein?" >>> message = [ {"role": "system", "content": "You are an AI expert that can answer any questions about protein."}, {"role": "user", "content": question}, ] >>> inputs = processor(proteins=[protein_information], messages_list=[message], return_tensors="pt", padding="longest") >>> outputs = model.generate(**inputs) >>> print(processor.batch_decode(outputs, skip_special_tokens=True)) ```""" outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, protein_input_ids=protein_input_ids, protein_attention_mask=protein_attention_mask, use_cache=use_cache, **kwargs, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs) lm_outputs = CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return lm_outputs __all__ = ["EvollaForProteinText2Text", "EvollaModel", "EvollaPreTrainedModel"]