# coding=utf-8 # Copyright 2025 The GLM4 & ZhipuAI team and HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch from ...cache_utils import Cache from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import CausalLMOutputWithPast from ...processing_utils import Unpack from ...utils import TransformersKwargs, logging from ..glm.modeling_glm import GlmAttention, GlmForCausalLM, GlmForSequenceClassification, GlmForTokenClassification from ..phi3.modeling_phi3 import Phi3MLP from .configuration_glm4 import Glm4Config from .modeling_glm4 import Glm4RMSNorm logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "THUDM/GLM-4-9B-0414" class Glm4MLP(Phi3MLP): pass class Glm4DecoderLayer(GradientCheckpointingLayer): def __init__(self, config: Glm4Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Glm4Attention(config=config, layer_idx=layer_idx) self.mlp = Glm4MLP(config) self.input_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_self_attn_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_mlp_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.post_self_attn_layernorm(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_mlp_layernorm(hidden_states) hidden_states = residual + hidden_states return hidden_states class Glm4Attention(GlmAttention): pass class Glm4ForCausalLM(GlmForCausalLM): def forward( self, **super_kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, Glm4ForCausalLM >>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414") >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" return super().forward(**super_kwargs) class Glm4ForSequenceClassification(GlmForSequenceClassification): pass class Glm4ForTokenClassification(GlmForTokenClassification): pass __all__ = [ "Glm4PreTrainedModel", # noqa: F822 "Glm4Model", # noqa: F822 "Glm4ForCausalLM", "Glm4ForSequenceClassification", "Glm4ForTokenClassification", ]