# coding=utf-8 # Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GraniteMoe model configuration""" from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation from ...utils import logging logger = logging.get_logger(__name__) class GraniteMoeConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GraniteMoeModel`]. It is used to instantiate an GraniteMoe model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GraniteMoe-3B. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the GraniteMoe model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GraniteMoeModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): Padding token id. bos_token_id (`int`, *optional*, defaults to 1): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier num_local_experts (`int`, *optional*, defaults to 8): total number of experts num_experts_per_tok (`int`, *optional*, defaults to 2): number of experts per token output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not the router logits should be returned by the model. Enabling this will also allow the model to output the auxiliary loss. router_aux_loss_coef (`float`, *optional*, defaults to 0.001): router auxiliary loss coefficient ```python >>> from transformers import GraniteMoeModel, GraniteMoeConfig >>> # Initializing a GraniteMoe granitemoe-3b style configuration >>> configuration = GraniteMoeConfig() >>> # Initializing a model from the granitemoe-7b style configuration >>> model = GraniteMoeModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "granitemoe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, embedding_multiplier=1.0, logits_scaling=1.0, residual_multiplier=1.0, attention_multiplier=1.0, num_local_experts=8, num_experts_per_tok=2, output_router_logits=False, router_aux_loss_coef=0.001, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling # this model has rope embedding type, hardcoded for BC self.position_embedding_type = "rope" self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.embedding_multiplier = embedding_multiplier self.logits_scaling = logits_scaling self.residual_multiplier = residual_multiplier self.attention_multiplier = attention_multiplier self.num_local_experts = num_local_experts self.num_experts_per_tok = num_experts_per_tok self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) rope_config_validation(self) __all__ = ["GraniteMoeConfig"]