# coding=utf-8 # Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Union import torch import torch.nn.functional as F from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPast, MoeCausalLMOutputWithPast, MoeModelOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import auto_docstring, is_torch_flex_attn_available, logging from .configuration_granitemoe import GraniteMoeConfig if is_torch_flex_attn_available(): from torch.nn.attention.flex_attention import BlockMask from ...integrations.flex_attention import make_flex_block_causal_mask logger = logging.get_logger(__name__) # Copied from transformers.models.jetmoe.modeling_jetmoe.load_balancing_loss_func def load_balancing_loss_func( gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None], num_experts: Optional[int] = None, top_k=2, attention_mask: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, int]: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: gate_logits: Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts]. num_experts: Number of experts top_k: The number of experts to route per-token, can be also interpreted as the `top-k` routing parameter. attention_mask (`torch.Tensor`, *optional*): The attention_mask used in forward function shape [batch_size X sequence_length] if not None. Returns: The auxiliary loss. """ if gate_logits is None or not isinstance(gate_logits, tuple): return 0 if isinstance(gate_logits, tuple): compute_device = gate_logits[0].device concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) if attention_mask is None: # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) else: batch_size, sequence_length = attention_mask.shape num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask expert_attention_mask = ( attention_mask[None, :, :, None, None] .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) .reshape(-1, top_k, num_experts) .to(compute_device) ) # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( expert_attention_mask, dim=0 ) # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert router_per_expert_attention_mask = ( attention_mask[None, :, :, None] .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) .reshape(-1, num_experts) .to(compute_device) ) # Compute the average probability of routing to these experts router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( router_per_expert_attention_mask, dim=0 ) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts # Copied from transformers.models.granite.modeling_granite.GraniteRMSNorm with Granite->GraniteMoe class GraniteMoeRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ GraniteMoeRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" # Copied from transformers.models.granite.modeling_granite.GraniteRotaryEmbedding with Granite->GraniteMoe class GraniteMoeRotaryEmbedding(nn.Module): def __init__(self, config: GraniteMoeConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.granite.modeling_granite.rotate_half with Granite->GraniteMoe def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.granite.modeling_granite.apply_rotary_pos_emb with Granite->GraniteMoe def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.jetmoe.modeling_jetmoe.JetMoeParallelExperts with JetMoe->GraniteMoe class GraniteMoeParallelExperts(nn.Module): def __init__(self, num_experts: int, input_size: int, output_size: int) -> None: """ Initialize the GraniteMoeParallelExperts module. The experts weights are stored in [num_experts, output_size, input_size] format. Such that it's compatible with many MoE libraries, such as [Megablock](https://github.com/databricks/megablocks) and [ScatterMoE](https://github.com/shawntan/scattermoe), as well as the [MoE kernel](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/fused_moe/fused_moe.py) used in vllm. Args: num_experts (int): Number of experts. input_size (int): Size of the input. output_size (int): Size of the output. """ super().__init__() self.weight = nn.Parameter(torch.empty(num_experts, output_size, input_size)) self.num_experts = num_experts self.input_size = input_size self.output_size = output_size def forward(self, inputs, expert_size): """ Forward pass of the GraniteMoeParallelExperts module. Args: inputs (Tensor): Input tensor. expert_size: Expert size information. Returns: Tensor: Output tensor. """ input_list = inputs.split(expert_size, dim=0) output_list = [] for i in range(self.num_experts): output_list.append(F.linear(input_list[i], self.weight[i])) results = torch.cat(output_list, dim=0) return results # Copied from transformers.models.jetmoe.modeling_jetmoe.JetMoeTopKGating with JetMoe->GraniteMoe class GraniteMoeTopKGating(nn.Module): def __init__(self, input_size: int, num_experts: int, top_k: int): """ Initialize the top-k gating mechanism. Args: input_size (`int`): Size of the input. num_experts (`int`): Number of experts. top_k (`int`): Number of top experts to select. """ super().__init__() self.num_experts = num_experts self.input_size = input_size self.top_k = top_k self.layer = nn.Linear(input_size, num_experts, bias=False) def forward(self, hidden_states): # compute the top_k routing decision logits = self.layer(hidden_states).float() # [batch_size x seq_len, num_experts] top_k_logits, top_k_indices = logits.topk(self.top_k, dim=1) # [num_tokens, top_k] top_k_gates = torch.softmax(top_k_logits, dim=1).type_as(hidden_states) # [num_tokens, top_k] # compute number of input given to each expert zeros = torch.zeros( [top_k_gates.size(0), self.num_experts], dtype=top_k_gates.dtype, device=top_k_gates.device ) # [num_tokens, num_experts] gates = zeros.scatter(1, top_k_indices, 1) # [num_tokens, num_experts] expert_size = gates.long().sum(0) # [num_experts,] # (This cause torch.compile to fail with `torch._dynamo.exc.Unsupported: Backend compiler failed with a fake tensor exception at`) # (and `DataDependentOutputException`) expert_size = expert_size.tolist() # sort and group input tokens according to expert assignment top_k_experts = top_k_indices.flatten() # [num_tokens * top_k] _, index_sorted_experts = top_k_experts.sort(0) # [num_tokens * top_k] batch_index = index_sorted_experts.div(self.top_k, rounding_mode="trunc") # [num_tokens * top_k] # gather the gate values for grouped input tokens top_k_gates = top_k_gates.flatten() # [num_tokens * top_k] batch_gates = top_k_gates[index_sorted_experts] # [num_tokens * top_k] return index_sorted_experts, batch_index, batch_gates, expert_size, logits class GraniteMoeMoE(nn.Module): """ A Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts. Args: config: Configuration object with model hyperparameters. """ def __init__(self, config: GraniteMoeConfig): super().__init__() self.input_size = config.hidden_size self.hidden_size = config.intermediate_size self.activation = ACT2FN[config.hidden_act] self.input_linear = GraniteMoeParallelExperts(config.num_local_experts, self.input_size, self.hidden_size * 2) self.output_linear = GraniteMoeParallelExperts(config.num_local_experts, self.hidden_size, self.input_size) self.router = GraniteMoeTopKGating( input_size=self.input_size, num_experts=config.num_local_experts, top_k=config.num_experts_per_tok, ) def forward(self, layer_input): """ Forward pass of the mixture of experts layer. Args: layer_input (Tensor): Input tensor. Returns: Tensor: Output tensor. Tensor: Router logits. """ bsz, length, emb_size = layer_input.size() layer_input = layer_input.reshape(-1, emb_size) _, batch_index, batch_gates, expert_size, router_logits = self.router(layer_input) expert_inputs = layer_input[batch_index] hidden_states = self.input_linear(expert_inputs, expert_size) chunked_hidden_states = hidden_states.chunk(2, dim=-1) hidden_states = self.activation(chunked_hidden_states[0]) * chunked_hidden_states[1] expert_outputs = self.output_linear(hidden_states, expert_size) expert_outputs = expert_outputs * batch_gates[:, None] zeros = torch.zeros((bsz * length, self.input_size), dtype=expert_outputs.dtype, device=expert_outputs.device) layer_output = zeros.index_add(0, batch_index, expert_outputs) layer_output = layer_output.view(bsz, length, self.input_size) return layer_output, router_logits # Copied from transformers.models.granite.modeling_granite.repeat_kv with Granite->GraniteMoe def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # copied from transformers.models.granite.modeling_granite.GraniteAttention with Granite->GraniteMoe # no longer copied after attention refactors class GraniteMoeAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: GraniteMoeConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.is_causal = True self.scaling = config.attention_multiplier if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # None or rope embeddings **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings if position_embeddings is not None else (None, None) if position_embeddings is not None: query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) return attn_output, attn_weights def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class GraniteMoeDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: GraniteMoeConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = GraniteMoeAttention(config=config, layer_idx=layer_idx) if config.num_local_experts > 0: self.block_sparse_moe = GraniteMoeMoE(config) self.input_layernorm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.residual_multiplier = config.residual_multiplier def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, output_router_logits: Optional[bool] = False, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states * self.residual_multiplier # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, router_logits = self.block_sparse_moe(hidden_states) hidden_states = residual + hidden_states * self.residual_multiplier outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if output_router_logits: outputs += (router_logits,) return outputs @auto_docstring class GraniteMoePreTrainedModel(PreTrainedModel): config: GraniteMoeConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["GraniteMoeDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) def _init_weights(self, module): super()._init_weights(module) if isinstance(module, GraniteMoeParallelExperts): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) @auto_docstring class GraniteMoeModel(GraniteMoePreTrainedModel): def __init__(self, config: GraniteMoeConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [GraniteMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False self.embedding_multiplier = config.embedding_multiplier self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.position_embedding_type = config.position_embedding_type self.rotary_emb = GraniteMoeRotaryEmbedding(config) if self.position_embedding_type == "rope" else None # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = inputs_embeds * self.embedding_multiplier # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds position_embeddings = None # create position embeddings to be shared across the decoder layers if self.rotary_emb is not None: position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, output_router_logits=output_router_logits, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) # Copied from transformers.models.gptj.modeling_gptj.GPTJModel._update_causal_mask def _update_causal_mask( self, attention_mask: Union[torch.Tensor, "BlockMask"], input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) return attention_mask # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype = input_tensor.dtype sequence_length = input_tensor.shape[1] if using_compilable_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.gptj.modeling_gptj.GPTJModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class GraniteMoeForCausalLM(GraniteMoePreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: GraniteMoeConfig): super().__init__(config) self.model = GraniteMoeModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_local_experts self.num_experts_per_tok = config.num_experts_per_tok # Initialize weights and apply final processing self.post_init() def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> Union[tuple, MoeCausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, GraniteMoeForCausalLM >>> model = GraniteMoeForCausalLM.from_pretrained("ibm/PowerMoE-3b") >>> tokenizer = AutoTokenizer.from_pretrained("ibm/PowerMoE-3b") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, cache_position=cache_position, **kwargs, ) # Only compute necessary logits hidden_states = outputs[0] slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) logits = logits / self.config.logits_scaling loss = None if labels is not None: # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() # Flatten the tokens loss = self.loss_function( logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) __all__ = ["GraniteMoeForCausalLM", "GraniteMoeModel", "GraniteMoePreTrainedModel"]