# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pixtral model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class PixtralVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PixtralVisionModel`]. It is used to instantiate an Pixtral vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to the vision encoder used by Pixtral-12B. e.g. [pixtral-hf/pixtral-9b](https://huggingface.co/pixtral-hf/pixtral-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1024): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 4096): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of input channels in the input images. image_size (`int`, *optional*, defaults to 1024): Max dimension of the input images. patch_size (`int`, *optional*, defaults to 16): Size of the image patches. hidden_act (`str`, *optional*, defaults to `"gelu"`): Activation function used in the hidden layers. attention_dropout (`float`, *optional*, defaults to 0.0): Dropout probability for the attention layers. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import PixtralVisionModel, PixtralVisionConfig >>> # Initializing a Pixtral-12B style configuration >>> config = PixtralVisionConfig() >>> # Initializing a model (with randomly initialized weights) from the configuration >>> model = PixtralVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "pixtral" def __init__( self, hidden_size=1024, intermediate_size=4096, num_hidden_layers=24, num_attention_heads=16, num_channels=3, image_size=1024, patch_size=16, hidden_act="gelu", attention_dropout=0.0, rope_theta=10000.0, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.hidden_act = hidden_act self.rope_theta = rope_theta self.head_dim = hidden_size // num_attention_heads self.initializer_range = initializer_range __all__ = ["PixtralVisionConfig"]