# Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processing saving/loading class for common processors. """ import bisect import copy import inspect import json import os import sys import typing import warnings from dataclasses import dataclass from pathlib import Path from typing import Any, Optional, TypedDict, TypeVar, Union import numpy as np import typing_extensions from huggingface_hub.errors import EntryNotFoundError from .audio_utils import load_audio from .dynamic_module_utils import custom_object_save from .feature_extraction_utils import BatchFeature from .image_utils import ChannelDimension, is_vision_available, load_image from .utils.chat_template_utils import render_jinja_template from .video_utils import VideoMetadata, load_video if is_vision_available(): from .image_utils import PILImageResampling from .tokenization_utils_base import ( PaddingStrategy, PreTokenizedInput, PreTrainedTokenizerBase, TextInput, TruncationStrategy, ) from .utils import ( AUDIO_TOKENIZER_NAME, CHAT_TEMPLATE_DIR, CHAT_TEMPLATE_FILE, LEGACY_PROCESSOR_CHAT_TEMPLATE_FILE, PROCESSOR_NAME, PushToHubMixin, TensorType, cached_file, copy_func, direct_transformers_import, download_url, is_offline_mode, is_remote_url, is_torch_available, list_repo_templates, logging, ) from .utils.deprecation import deprecate_kwarg if is_torch_available(): from .modeling_utils import PreTrainedAudioTokenizerBase logger = logging.get_logger(__name__) # type hinting: specifying the type of processor class that inherits from ProcessorMixin SpecificProcessorType = TypeVar("SpecificProcessorType", bound="ProcessorMixin") # Dynamically import the Transformers module to grab the attribute classes of the processor from their names. transformers_module = direct_transformers_import(Path(__file__).parent) AUTO_TO_BASE_CLASS_MAPPING = { "AutoTokenizer": "PreTrainedTokenizerBase", "AutoFeatureExtractor": "FeatureExtractionMixin", "AutoImageProcessor": "ImageProcessingMixin", "AutoVideoProcessor": "BaseVideoProcessor", } if sys.version_info >= (3, 11): Unpack = typing.Unpack else: Unpack = typing_extensions.Unpack class TextKwargs(TypedDict, total=False): """ Keyword arguments for text processing. For extended documentation, check out tokenization_utils_base methods and docstrings associated. Attributes: add_special_tokens (`bool`, *optional*) Whether or not to add special tokens when encoding the sequences. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*) Activates and controls padding. truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*): Activates and controls truncation. max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. stride (`int`, *optional*): If set, the overflowing tokens will contain some tokens from the end of the truncated sequence. is_split_into_words (`bool`, *optional*): Whether or not the input is already pre-tokenized. pad_to_multiple_of (`int`, *optional*): If set, will pad the sequence to a multiple of the provided value. return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. return_overflowing_tokens (`bool`, *optional*): Whether or not to return overflowing token sequences. return_special_tokens_mask (`bool`, *optional*): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*): Whether or not to return `(char_start, char_end)` for each token. return_length (`bool`, *optional*): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*): Whether or not to print more information and warnings. padding_side (`str`, *optional*): The side on which padding will be applied. return_mm_token_type_ids (`bool`, *optional*): Whether to return multimodal token type ids indicating mm placeholder token positions. """ text_pair: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] text_target: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] text_pair_target: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] add_special_tokens: Optional[bool] padding: Union[bool, str, PaddingStrategy] truncation: Union[bool, str, TruncationStrategy] max_length: Optional[int] stride: Optional[int] is_split_into_words: Optional[bool] pad_to_multiple_of: Optional[int] return_token_type_ids: Optional[bool] return_attention_mask: Optional[bool] return_overflowing_tokens: Optional[bool] return_special_tokens_mask: Optional[bool] return_offsets_mapping: Optional[bool] return_length: Optional[bool] verbose: Optional[bool] padding_side: Optional[str] return_mm_token_type_ids: Optional[bool] class ImagesKwargs(TypedDict, total=False): """ Keyword arguments for image processing. For extended documentation, check the appropriate ImageProcessor class methods and docstrings. Attributes: do_resize (`bool`, *optional*): Whether to resize the image. size (`dict[str, int]`, *optional*): Resize the shorter side of the input to `size["shortest_edge"]`. size_divisor (`int`, *optional*): The size by which to make sure both the height and width can be divided. crop_size (`dict[str, int]`, *optional*): Desired output size when applying center-cropping. resample (`PILImageResampling`, *optional*): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*): Whether to rescale the image by the specified scale `rescale_factor`. rescale_factor (`int` or `float`, *optional*): Scale factor to use if rescaling the image. do_normalize (`bool`, *optional*): Whether to normalize the image. image_mean (`float` or `list[float]`, *optional*): Mean to use if normalizing the image. image_std (`float` or `list[float]`, *optional*): Standard deviation to use if normalizing the image. do_pad (`bool`, *optional*): Whether to pad the image to the `(max_height, max_width)` of the images in the batch. pad_size (`dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. do_center_crop (`bool`, *optional*): Whether to center crop the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. device (`str`, *optional*): The device to use for processing (e.g. "cpu", "cuda"), only relevant for fast image processing. """ do_resize: Optional[bool] size: Optional[dict[str, int]] size_divisor: Optional[int] crop_size: Optional[dict[str, int]] resample: Optional[Union["PILImageResampling", int]] do_rescale: Optional[bool] rescale_factor: Optional[float] do_normalize: Optional[bool] image_mean: Optional[Union[float, list[float]]] image_std: Optional[Union[float, list[float]]] do_pad: Optional[bool] pad_size: Optional[dict[str, int]] do_center_crop: Optional[bool] data_format: Optional[ChannelDimension] input_data_format: Optional[Union[str, ChannelDimension]] device: Optional[str] class VideosKwargs(TypedDict, total=False): """ Keyword arguments for video processing. Attributes: do_convert_rgb (`bool`): Whether to convert the video to RGB fromat. do_resize (`bool`): Whether to resize the video. size (`dict[str, int]`, *optional*): Resize the shorter side of the input to `size["shortest_edge"]`. default_to_square (`bool`, *optional*, defaults to `self.default_to_square`): Whether to default to a square when resizing, if size is an int. size_divisor (`int`, *optional*): The size by which to make sure both the height and width can be divided. resample (`PILImageResampling`, *optional*): Resampling filter to use if resizing the video. do_rescale (`bool`, *optional*): Whether to rescale the video by the specified scale `rescale_factor`. rescale_factor (`int` or `float`, *optional*): Scale factor to use if rescaling the video. do_normalize (`bool`, *optional*): Whether to normalize the video. image_mean (`float` or `list[float]`, *optional*): Mean to use if normalizing the video. image_std (`float` or `list[float]`, *optional*): Standard deviation to use if normalizing the video. do_pad (`bool`, *optional*): Whether to pad the video to the `(max_height, max_width)` of the videos in the batch. do_center_crop (`bool`, *optional*): Whether to center crop the video. do_sample_frames (`bool`, *optional*): Whether to sample frames from the video before processing or to process the whole video. video_metadata (`VideoMetadata`, *optional*): Metadata of the video containing information about total duration, fps and total number of frames. num_frames (`int`, *optional*): Maximum number of frames to sample when `do_sample_frames=True`. fps (`int` or `float`, *optional*): Target frames to sample per second when `do_sample_frames=True`. crop_size (`dict[str, int]`, *optional*): Desired output size when applying center-cropping. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output video. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input video. """ do_convert_rgb: Optional[bool] do_resize: Optional[bool] size: Optional[dict[str, int]] size_divisor: Optional[int] default_to_square: Optional[bool] resample: Optional["PILImageResampling"] do_rescale: Optional[bool] rescale_factor: Optional[float] do_normalize: Optional[bool] image_mean: Optional[Union[float, list[float]]] image_std: Optional[Union[float, list[float]]] do_pad: Optional[bool] do_center_crop: Optional[bool] crop_size: Optional[dict[str, int]] data_format: Optional[ChannelDimension] input_data_format: Optional[Union[str, ChannelDimension]] device: Optional[str] do_sample_frames: Optional[bool] video_metadata: Optional[Union[VideoMetadata, dict]] fps: Optional[Union[int, float]] num_frames: Optional[int] class AudioKwargs(TypedDict, total=False): """ Keyword arguments for audio processing. Attributes: sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. raw_speech (`np.ndarray`, `list[float]`, `list[np.ndarray]`, `list[list[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set, will pad the sequence to a multiple of the provided value. return_attention_mask (`bool`, *optional*): Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`. """ sampling_rate: Optional[int] raw_speech: Optional[Union["np.ndarray", list[float], list["np.ndarray"], list[list[float]]]] padding: Optional[Union[bool, str, PaddingStrategy]] max_length: Optional[int] truncation: Optional[bool] pad_to_multiple_of: Optional[int] return_attention_mask: Optional[bool] class CommonKwargs(TypedDict, total=False): return_tensors: Optional[Union[str, TensorType]] class ProcessingKwargs(TextKwargs, ImagesKwargs, VideosKwargs, AudioKwargs, CommonKwargs, total=False): """ Base class for kwargs passing to processors. A model should have its own `ModelProcessorKwargs` class that inherits from `ProcessingKwargs` to provide: 1) Additional typed keys and that this model requires to process inputs. 2) Default values for existing keys under a `_defaults` attribute. New keys have to be defined as follows to ensure type hinting is done correctly. ```python # adding a new image kwarg for this model class ModelImagesKwargs(ImagesKwargs, total=False): new_image_kwarg: Optional[bool] class ModelProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: ModelImagesKwargs _defaults = { "images_kwargs: { "new_image_kwarg": False, } "text_kwargs": { "padding": "max_length", }, } ``` For Python 3.8 compatibility, when inheriting from this class and overriding one of the kwargs, you need to manually update the __annotations__ dictionary. This can be done as follows: ```python class CustomProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: CustomImagesKwargs CustomProcessorKwargs.__annotations__["images_kwargs"] = CustomImagesKwargs # python 3.8 compatibility ```python """ common_kwargs: CommonKwargs = { **CommonKwargs.__annotations__, } text_kwargs: TextKwargs = { **TextKwargs.__annotations__, } images_kwargs: ImagesKwargs = { **ImagesKwargs.__annotations__, } videos_kwargs: VideosKwargs = { **VideosKwargs.__annotations__, } audio_kwargs: AudioKwargs = { **AudioKwargs.__annotations__, } class TokenizerChatTemplateKwargs(TypedDict, total=False): """ Keyword arguments for tokenizer's `apply_chat_template`, when it is called from within a processor. tools (`list[Dict]`, *optional*): A list of tools (callable functions) that will be accessible to the model. If the template does not support function calling, this argument will have no effect. Each tool should be passed as a JSON Schema, giving the name, description and argument types for the tool. See our [chat templating guide](https://huggingface.co/docs/transformers/main/en/chat_templating#automated-function-conversion-for-tool-use) for more information. documents (`list[dict[str, str]]`, *optional*): A list of dicts representing documents that will be accessible to the model if it is performing RAG (retrieval-augmented generation). If the template does not support RAG, this argument will have no effect. We recommend that each document should be a dict containing "title" and "text" keys. Please see the RAG section of the [chat templating guide](https://huggingface.co/docs/transformers/main/en/chat_templating#arguments-for-RAG) for examples of passing documents with chat templates. add_generation_prompt (bool, *optional*): If this is set, a prompt with the token(s) that indicate the start of an assistant message will be appended to the formatted output. This is useful when you want to generate a response from the model. Note that this argument will be passed to the chat template, and so it must be supported in the template for this argument to have any effect. continue_final_message (bool, *optional*): If this is set, the chat will be formatted so that the final message in the chat is open-ended, without any EOS tokens. The model will continue this message rather than starting a new one. This allows you to "prefill" part of the model's response for it. Cannot be used at the same time as `add_generation_prompt`. return_assistant_tokens_mask (`bool`, defaults to `False`): Whether to return a mask of the assistant generated tokens. For tokens generated by the assistant, the mask will contain 1. For user and system tokens, the mask will contain 0. This functionality is only available for chat templates that support it via the `{% generation %}` keyword. """ tools: Optional[list[dict]] = None documents: Optional[list[dict[str, str]]] = None add_generation_prompt: Optional[bool] = False continue_final_message: Optional[bool] = False return_assistant_tokens_mask: Optional[bool] = False class ChatTemplateLoadKwargs(TypedDict, total=False): """ Keyword arguments used to load multimodal data in processor chat templates. num_frames (`int`, *optional*): Number of frames to sample uniformly. If not passed, the whole video is loaded. video_load_backend (`str`, *optional*, defaults to `"pyav"`): The backend to use when loading the video which will be used only when there are videos in the conversation. Can be any of ["decord", "pyav", "opencv", "torchvision"]. Defaults to "pyav" because it is the only backend that supports all types of sources to load from. sample_indices_fn (`Callable`, *optional*): A callable function that will return indices at which the video should be sampled. If the video has to be loaded using by a different sampling technique than provided by `num_frames` or `fps` arguments, one should provide their own `sample_indices_fn`. If not provided, simple uniformt sampling with fps is performed, otherwise `sample_indices_fn` has priority over other args. The function expects at input the all args along with all kwargs passed to `load_video` and should output valid indices at which the video should be sampled. For example: def sample_indices_fn(num_frames, fps, metadata, **kwargs): # add you sampling logic here ... return np.linspace(start_idx, end_idx, num_frames, dtype=int) """ video_load_backend: Optional[str] = "pyav" sampling_rate: Optional[int] = 16_000 load_audio_from_video: Optional[bool] = False class ProcessorChatTemplateKwargs(ChatTemplateLoadKwargs, TokenizerChatTemplateKwargs, total=False): """ Keyword arguments for processor's `apply_chat_template`. tokenize (`bool`, *optional*, defaults to `False`): Whether to tokenize the output or not. return_dict (`bool`, defaults to `False`): Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`. """ tokenize: Optional[bool] = False return_dict: Optional[bool] = False class AllKwargsForChatTemplate( TextKwargs, ImagesKwargs, VideosKwargs, AudioKwargs, CommonKwargs, ProcessorChatTemplateKwargs ): processor_kwargs: ProcessingKwargs = { **ProcessingKwargs.__annotations__, } mm_load_kwargs: ChatTemplateLoadKwargs = { **TextKwargs.__annotations__, } template_kwargs: ProcessorChatTemplateKwargs = { **ProcessorChatTemplateKwargs.__annotations__, } @dataclass class MultiModalData: """ Dataclass that holds extra useful data for processing multimodal data. Processors currently cannot return keys, unless it is used in model's forward. Thus we have helper methods that calculate and return useful data from processing input multimodals (images/videos). Note that this dataclass is aimed to be used only in vLLM and we might change its API in the future. """ num_image_tokens: list[int] = None num_video_tokens: list[int] = None num_audio_tokens: list[int] = None num_image_patches: list[int] = None def __contains__(self, key): return hasattr(self, key) and getattr(self, key) is not None def __getitem__(self, key): if hasattr(self, key): return getattr(self, key) raise AttributeError(f"{self.__class__.__name__} has no attribute {key}") class ProcessorMixin(PushToHubMixin): """ This is a mixin used to provide saving/loading functionality for all processor classes. """ attributes = ["feature_extractor", "tokenizer"] optional_attributes = ["chat_template", "audio_tokenizer"] optional_call_args: list[str] = [] # Names need to be attr_class for attr in attributes feature_extractor_class = None tokenizer_class = None _auto_class = None # args have to match the attributes class attribute def __init__(self, *args, **kwargs): # First, extract optional attributes from kwargs if present # Optional attributes can never be positional arguments for optional_attribute in self.optional_attributes: optional_attribute_value = kwargs.pop(optional_attribute, None) setattr(self, optional_attribute, optional_attribute_value) # Check audio tokenizer for its class but do not treat it as attr to avoid saving weights if optional_attribute == "audio_tokenizer" and optional_attribute_value is not None: proper_class = self.check_argument_for_proper_class(optional_attribute, optional_attribute_value) if not (is_torch_available() and isinstance(optional_attribute_value, PreTrainedAudioTokenizerBase)): raise ValueError( f"Tried to use `{proper_class}` for audio tokenization. However, this class is not" " registered for audio tokenization." ) # Sanitize args and kwargs for key in kwargs: if key not in self.attributes: raise TypeError(f"Unexpected keyword argument {key}.") for arg, attribute_name in zip(args, self.attributes): if attribute_name in kwargs: raise TypeError(f"Got multiple values for argument {attribute_name}.") else: kwargs[attribute_name] = arg if len(kwargs) != len(self.attributes): raise ValueError( f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got " f"{len(args)} arguments instead." ) # Check each arg is of the proper class (this will also catch a user initializing in the wrong order) for attribute_name, arg in kwargs.items(): self.check_argument_for_proper_class(attribute_name, arg) setattr(self, attribute_name, arg) def check_argument_for_proper_class(self, argument_name, argument): """ Checks the passed argument's class against the expected transformers class. In case of an unexpected mismatch between expected and actual class, an error is raise. Otherwise, the proper retrieved class is returned. """ class_name = getattr(self, f"{argument_name}_class") # Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class. class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name) if isinstance(class_name, tuple): proper_class = tuple(self.get_possibly_dynamic_module(n) for n in class_name if n is not None) else: proper_class = self.get_possibly_dynamic_module(class_name) if not isinstance(argument, proper_class): raise TypeError( f"Received a {type(argument).__name__} for argument {argument_name}, but a {class_name} was expected." ) return proper_class def to_dict(self) -> dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `dict[str, Any]`: Dictionary of all the attributes that make up this processor instance. """ output = copy.deepcopy(self.__dict__) # Get the kwargs in `__init__`. sig = inspect.signature(self.__init__) # Only save the attributes that are presented in the kwargs of `__init__`. attrs_to_save = sig.parameters # Don't save attributes like `tokenizer`, `image processor` etc. attrs_to_save = [x for x in attrs_to_save if x not in self.__class__.attributes] # extra attributes to be kept attrs_to_save += ["auto_map"] output = {k: v for k, v in output.items() if k in attrs_to_save} output["processor_class"] = self.__class__.__name__ if "tokenizer" in output: del output["tokenizer"] if "image_processor" in output: del output["image_processor"] if "video_processor" in output: del output["video_processor"] if "feature_extractor" in output: del output["feature_extractor"] if "chat_template" in output: del output["chat_template"] if "audio_tokenizer" in output: del output["audio_tokenizer"] # Some attributes have different names but containing objects that are not simple strings output = { k: v for k, v in output.items() if not (isinstance(v, PushToHubMixin) or v.__class__.__name__ == "BeamSearchDecoderCTC") } return output def to_json_string(self) -> str: """ Serializes this instance to a JSON string. Returns: `str`: String containing all the attributes that make up this feature_extractor instance in JSON format. """ dictionary = self.to_dict() return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this processor instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) def __repr__(self): attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes] attributes_repr = "\n".join(attributes_repr) return f"{self.__class__.__name__}:\n{attributes_repr}\n\n{self.to_json_string()}" def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs): """ Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it can be reloaded using the [`~ProcessorMixin.from_pretrained`] method. This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the methods above for more information. Args: save_directory (`str` or `os.PathLike`): Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will be created if it does not exist). push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: attrs = [getattr(self, attribute_name) for attribute_name in self.attributes] configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs] configs.append(self) custom_object_save(self, save_directory, config=configs) save_jinja_files = kwargs.get("save_jinja_files", True) for attribute_name in self.attributes: attribute = getattr(self, attribute_name) # Include the processor class in the attribute config so this processor can then be reloaded with the # `AutoProcessor` API. if hasattr(attribute, "_set_processor_class"): attribute._set_processor_class(self.__class__.__name__) if attribute_name == "tokenizer": # Propagate save_jinja_files to tokenizer to ensure we don't get conflicts attribute.save_pretrained(save_directory, save_jinja_files=save_jinja_files) else: attribute.save_pretrained(save_directory) if self._auto_class is not None: # We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up. for attribute_name in self.attributes: attribute = getattr(self, attribute_name) if isinstance(attribute, PreTrainedTokenizerBase): del attribute.init_kwargs["auto_map"] # If we save using the predefined names, we can load using `from_pretrained` # plus we save chat_template in its own file output_processor_file = os.path.join(save_directory, PROCESSOR_NAME) output_chat_template_file_jinja = os.path.join(save_directory, CHAT_TEMPLATE_FILE) output_chat_template_file_legacy = os.path.join( save_directory, LEGACY_PROCESSOR_CHAT_TEMPLATE_FILE ) # Legacy filename chat_template_dir = os.path.join(save_directory, CHAT_TEMPLATE_DIR) output_audio_tokenizer_file = os.path.join(save_directory, AUDIO_TOKENIZER_NAME) processor_dict = self.to_dict() # Save `chat_template` in its own file. We can't get it from `processor_dict` as we popped it in `to_dict` # to avoid serializing chat template in json config file. So let's get it from `self` directly if self.chat_template is not None: save_jinja_files = kwargs.get("save_jinja_files", True) is_single_template = isinstance(self.chat_template, str) if save_jinja_files and is_single_template: # New format for single templates is to save them as chat_template.jinja with open(output_chat_template_file_jinja, "w", encoding="utf-8") as f: f.write(self.chat_template) logger.info(f"chat template saved in {output_chat_template_file_jinja}") elif save_jinja_files and not is_single_template: # New format for multiple templates is to save the default as chat_template.jinja # and the other templates in the chat_templates/ directory for template_name, template in self.chat_template.items(): if template_name == "default": with open(output_chat_template_file_jinja, "w", encoding="utf-8") as f: f.write(self.chat_template["default"]) logger.info(f"chat template saved in {output_chat_template_file_jinja}") else: os.makedirs(chat_template_dir, exist_ok=True) template_filepath = os.path.join(chat_template_dir, f"{template_name}.jinja") with open(template_filepath, "w", encoding="utf-8") as f: f.write(template) logger.info(f"chat template saved in {template_filepath}") elif is_single_template: # Legacy format for single templates: Put them in chat_template.json chat_template_json_string = ( json.dumps({"chat_template": self.chat_template}, indent=2, sort_keys=True) + "\n" ) with open(output_chat_template_file_legacy, "w", encoding="utf-8") as writer: writer.write(chat_template_json_string) logger.info(f"chat template saved in {output_chat_template_file_legacy}") elif self.chat_template is not None: # At this point we have multiple templates in the legacy format, which is not supported # chat template dicts are saved to chat_template.json as lists of dicts with fixed key names. raise ValueError( "Multiple chat templates are not supported in the legacy format. Please save them as " "separate files using the `save_jinja_files` argument." ) if self.audio_tokenizer is not None: audio_tokenizer_class = self.audio_tokenizer.__class__.__name__ audio_tokenizer_name_or_path = self.audio_tokenizer.name_or_path audio_tokenizer_dict = { "audio_tokenizer_class": audio_tokenizer_class, "audio_tokenizer_name_or_path": audio_tokenizer_name_or_path, } audio_tokenizer_json = json.dumps(audio_tokenizer_dict, indent=2, sort_keys=True) + "\n" with open(output_audio_tokenizer_file, "w", encoding="utf-8") as writer: writer.write(audio_tokenizer_json) # For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and # `auto_map` is not specified. if set(processor_dict.keys()) != {"processor_class"}: self.to_json_file(output_processor_file) logger.info(f"processor saved in {output_processor_file}") if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=kwargs.get("token"), ) if set(processor_dict.keys()) == {"processor_class"}: return [] return [output_processor_file] @classmethod def get_processor_dict( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> tuple[dict[str, Any], dict[str, Any]]: """ From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a processor of type [`~processing_utils.ProcessingMixin`] using `from_args_and_dict`. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. Returns: `tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the processor object. """ # holding a copy for optionally loading the audio tokenizer (if available) audio_tokenizer_kwargs = copy.deepcopy(kwargs) cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", None) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", "") from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): processor_file = os.path.join(pretrained_model_name_or_path, PROCESSOR_NAME) additional_chat_template_files = {} resolved_additional_chat_template_files = {} if os.path.isfile(pretrained_model_name_or_path): resolved_processor_file = pretrained_model_name_or_path # can't load chat-template and audio tokenizer when given a file as pretrained_model_name_or_path resolved_chat_template_file = None resolved_raw_chat_template_file = None resolved_audio_tokenizer_file = None is_local = True elif is_remote_url(pretrained_model_name_or_path): processor_file = pretrained_model_name_or_path resolved_processor_file = download_url(pretrained_model_name_or_path) # can't load chat-template and audio tokenizer when given a file url as pretrained_model_name_or_path resolved_chat_template_file = None resolved_raw_chat_template_file = None resolved_audio_tokenizer_file = None else: if is_local: template_dir = Path(pretrained_model_name_or_path, CHAT_TEMPLATE_DIR) if template_dir.is_dir(): for template_file in template_dir.glob("*.jinja"): template_name = template_file.stem additional_chat_template_files[template_name] = f"{CHAT_TEMPLATE_DIR}/{template_file.name}" else: try: for template in list_repo_templates( pretrained_model_name_or_path, local_files_only=local_files_only, revision=revision, cache_dir=cache_dir, ): additional_chat_template_files[template] = f"{CHAT_TEMPLATE_DIR}/{template}.jinja" except EntryNotFoundError: pass # No template dir means no template files processor_file = PROCESSOR_NAME try: # Load from local folder or from cache or download from model Hub and cache resolved_processor_file = cached_file( pretrained_model_name_or_path, processor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) # chat_template.json is a legacy file used by the processor class # a raw chat_template.jinja is preferred in future resolved_chat_template_file = cached_file( pretrained_model_name_or_path, LEGACY_PROCESSOR_CHAT_TEMPLATE_FILE, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) resolved_raw_chat_template_file = cached_file( pretrained_model_name_or_path, CHAT_TEMPLATE_FILE, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) resolved_additional_chat_template_files = { template_name: cached_file( pretrained_model_name_or_path, template_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) for template_name, template_file in additional_chat_template_files.items() } resolved_audio_tokenizer_file = cached_file( pretrained_model_name_or_path, AUDIO_TOKENIZER_NAME, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) except OSError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to # the original exception. raise except Exception: # For any other exception, we throw a generic error. raise OSError( f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" " it from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a {PROCESSOR_NAME} file" ) # Add chat template as kwarg before returning because most models don't have processor config if resolved_chat_template_file is not None: # This is the legacy path with open(resolved_chat_template_file, encoding="utf-8") as reader: chat_template_json = json.loads(reader.read()) chat_templates = {"default": chat_template_json["chat_template"]} if resolved_additional_chat_template_files: raise ValueError( "Cannot load chat template due to conflicting files - this checkpoint combines " "a legacy chat_template.json file with separate template files, which is not " "supported. To resolve this error, replace the legacy chat_template.json file " "with a modern chat_template.jinja file." ) else: chat_templates = { template_name: open(template_file, "r", encoding="utf-8").read() for template_name, template_file in resolved_additional_chat_template_files.items() } if resolved_raw_chat_template_file is not None: with open(resolved_raw_chat_template_file, "r", encoding="utf-8") as reader: chat_templates["default"] = reader.read() if isinstance(chat_templates, dict) and "default" in chat_templates and len(chat_templates) == 1: chat_templates = chat_templates["default"] # Flatten when we just have a single template/file if chat_templates: kwargs["chat_template"] = chat_templates # Same as chat template, adding as kwarg after loading the model audio_tokenizer = None if resolved_audio_tokenizer_file is not None: with open(resolved_audio_tokenizer_file, "r", encoding="utf-8") as reader: # The json contains the references we need to init the correct model audio_tokenizer_references = json.load(reader) audio_tokenizer_class = cls.get_possibly_dynamic_module( audio_tokenizer_references["audio_tokenizer_class"] ) audio_tokenizer_path = audio_tokenizer_references["audio_tokenizer_name_or_path"] audio_tokenizer = audio_tokenizer_class.from_pretrained(audio_tokenizer_path, **audio_tokenizer_kwargs) if audio_tokenizer is not None: kwargs["audio_tokenizer"] = audio_tokenizer # Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not # updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict. # (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception) # However, for models added in the future, we won't get the expected error if this file is missing. if resolved_processor_file is None: # In any case we need to pass `chat_template` if it is available processor_dict = {} if "chat_template" in kwargs: processor_dict["chat_template"] = kwargs.pop("chat_template") if "audio_tokenizer" in kwargs: processor_dict["audio_tokenizer"] = kwargs.pop("audio_tokenizer") return processor_dict, kwargs try: # Load processor dict with open(resolved_processor_file, encoding="utf-8") as reader: text = reader.read() processor_dict = json.loads(text) except json.JSONDecodeError: raise OSError(f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file.") if is_local: logger.info(f"loading configuration file {resolved_processor_file}") else: logger.info(f"loading configuration file {processor_file} from cache at {resolved_processor_file}") if "chat_template" in processor_dict and processor_dict["chat_template"] is not None: logger.warning_once( "Chat templates should be in a 'chat_template.jinja' file but found key='chat_template' " "in the processor's config. Make sure to move your template to its own file." ) if "chat_template" in kwargs: processor_dict["chat_template"] = kwargs.pop("chat_template") if "audio_tokenizer" in kwargs: processor_dict["audio_tokenizer"] = kwargs.pop("audio_tokenizer") return processor_dict, kwargs @classmethod def from_args_and_dict(cls, args, processor_dict: dict[str, Any], **kwargs): """ Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters. Args: processor_dict (`dict[str, Any]`): Dictionary that will be used to instantiate the processor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the [`~processing_utils.ProcessingMixin.to_dict`] method. kwargs (`dict[str, Any]`): Additional parameters from which to initialize the processor object. Returns: [`~processing_utils.ProcessingMixin`]: The processor object instantiated from those parameters. """ processor_dict = processor_dict.copy() return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) # We have to pop up some unused (but specific) kwargs and then validate that it doesn't contain unused kwargs # If we don't pop, some specific kwargs will raise a warning if "processor_class" in processor_dict: del processor_dict["processor_class"] if "auto_map" in processor_dict: del processor_dict["auto_map"] # override processor_dict with given kwargs processor_dict.update(kwargs) # check if there is an overlap between args and processor_dict accepted_args_and_kwargs = cls.__init__.__code__.co_varnames[: cls.__init__.__code__.co_argcount][1:] # validate both processor_dict and given kwargs unused_kwargs, valid_kwargs = cls.validate_init_kwargs( processor_config=processor_dict, valid_kwargs=accepted_args_and_kwargs ) # update args that are already in processor_dict to avoid duplicate arguments args_to_update = { i: valid_kwargs.pop(arg) for i, arg in enumerate(accepted_args_and_kwargs) if (arg in valid_kwargs and i < len(args)) } args = [arg if i not in args_to_update else args_to_update[i] for i, arg in enumerate(args)] # instantiate processor with used (and valid) kwargs only processor = cls(*args, **valid_kwargs) logger.info(f"Processor {processor}") if return_unused_kwargs: return processor, unused_kwargs else: return processor def _merge_kwargs( self, ModelProcessorKwargs: ProcessingKwargs, tokenizer_init_kwargs: Optional[dict] = None, **kwargs, ) -> dict[str, dict]: """ Method to merge dictionaries of kwargs cleanly separated by modality within a Processor instance. The order of operations is as follows: 1) kwargs passed as before have highest priority to preserve BC. ```python high_priority_kwargs = {"crop_size" = {"height": 222, "width": 222}, "padding" = "max_length"} processor(..., **high_priority_kwargs) ``` 2) kwargs passed as modality-specific kwargs have second priority. This is the recommended API. ```python processor(..., text_kwargs={"padding": "max_length"}, images_kwargs={"crop_size": {"height": 222, "width": 222}}}) ``` 3) kwargs passed during instantiation of a modality processor have fourth priority. ```python tokenizer = tokenizer_class(..., {"padding": "max_length"}) image_processor = image_processor_class(...) processor(tokenizer, image_processor) # will pass max_length unless overridden by kwargs at call ``` 4) defaults kwargs specified at processor level have lowest priority. ```python class MyProcessingKwargs(ProcessingKwargs, CommonKwargs, TextKwargs, ImagesKwargs, total=False): _defaults = { "text_kwargs": { "padding": "max_length", "max_length": 64, }, } ``` Args: ModelProcessorKwargs (`ProcessingKwargs`): Typed dictionary of kwargs specifically required by the model passed. tokenizer_init_kwargs (`Dict`, *optional*): Dictionary of kwargs the tokenizer was instantiated with and need to take precedence over defaults. Returns: output_kwargs (`Dict`): Dictionary of per-modality kwargs to be passed to each modality-specific processor. """ # Initialize dictionaries output_kwargs = { "text_kwargs": {}, "images_kwargs": {}, "audio_kwargs": {}, "videos_kwargs": {}, "common_kwargs": {}, } default_kwargs = { "text_kwargs": {}, "images_kwargs": {}, "audio_kwargs": {}, "videos_kwargs": {}, "common_kwargs": {}, } possible_modality_keywords = {"text", "audio", "videos", "images"} used_keys = set() # get defaults from set model processor kwargs if they exist for modality in default_kwargs: # noqa: PLC0206 default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy() # update defaults with arguments from tokenizer init for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys(): # init with tokenizer init kwargs if necessary if tokenizer_init_kwargs is not None and modality_key in tokenizer_init_kwargs: value = ( getattr(self.tokenizer, modality_key) if hasattr(self.tokenizer, modality_key) else tokenizer_init_kwargs[modality_key] ) default_kwargs[modality][modality_key] = value # now defaults kwargs are updated with the tokenizers defaults. # pass defaults to output dictionary output_kwargs.update(default_kwargs) # update modality kwargs with passed kwargs non_modality_kwargs = set(kwargs) - set(output_kwargs) for modality, output_kwarg in output_kwargs.items(): for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys(): # check if we received a structured kwarg dict or not to handle it correctly if modality in kwargs: kwarg_value = kwargs[modality].pop(modality_key, "__empty__") # check if this key was passed as a flat kwarg. if kwarg_value != "__empty__" and modality_key in non_modality_kwargs: raise ValueError( f"Keyword argument {modality_key} was passed two times:\n" f"in a dictionary for {modality} and as a **kwarg." ) elif modality_key in kwargs: # we get a modality_key instead of popping it because modality-specific processors # can have overlapping kwargs kwarg_value = kwargs.get(modality_key, "__empty__") else: kwarg_value = "__empty__" if not isinstance(kwarg_value, str) or kwarg_value != "__empty__": output_kwarg[modality_key] = kwarg_value used_keys.add(modality_key) # Determine if kwargs is a flat dictionary or contains nested dictionaries if any(key in default_kwargs for key in kwargs): # kwargs is dictionary-based, and some keys match modality names for modality, subdict in kwargs.items(): if modality in default_kwargs: for subkey, subvalue in subdict.items(): if subkey not in used_keys: output_kwargs[modality][subkey] = subvalue used_keys.add(subkey) else: # kwargs is a flat dictionary for key, kwarg in kwargs.items(): if key not in used_keys: if key in ModelProcessorKwargs.__annotations__["common_kwargs"].__annotations__.keys(): output_kwargs["common_kwargs"][key] = kwarg elif key not in possible_modality_keywords: logger.warning_once( f"Keyword argument `{key}` is not a valid argument for this processor and will be ignored." ) # all modality-specific kwargs are updated with common kwargs for kwarg in output_kwargs.values(): kwarg.update(output_kwargs["common_kwargs"]) return output_kwargs @classmethod def from_pretrained( cls: type[SpecificProcessorType], pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", **kwargs, ) -> SpecificProcessorType: r""" Instantiate a processor associated with a pretrained model. This class method is simply calling the feature extractor [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor [`~image_processing_utils.ImageProcessingMixin`] and the tokenizer [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the methods above for more information. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. **kwargs Additional keyword arguments passed along to both [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`]. """ kwargs["cache_dir"] = cache_dir kwargs["force_download"] = force_download kwargs["local_files_only"] = local_files_only kwargs["revision"] = revision use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs) return cls.from_args_and_dict(args, processor_dict, **kwargs) @classmethod def register_for_auto_class(cls, auto_class="AutoProcessor"): """ Register this class with a given auto class. This should only be used for custom feature extractors as the ones in the library are already mapped with `AutoProcessor`. Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`): The auto class to register this new feature extractor with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class @classmethod def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): """ Identify and instantiate the subcomponents of Processor classes, like image processors and tokenizers. This method uses the Processor attributes like `tokenizer_class` to figure out what class those subcomponents should be. Note that any subcomponents must either be library classes that are accessible in the `transformers` root, or they must be custom code that has been registered with the relevant autoclass, via methods like `AutoTokenizer.register()`. If neither of these conditions are fulfilled, this method will be unable to find the relevant subcomponent class and will raise an error. """ args = [] for attribute_name in cls.attributes: class_name = getattr(cls, f"{attribute_name}_class") if isinstance(class_name, tuple): classes = tuple(cls.get_possibly_dynamic_module(n) if n is not None else None for n in class_name) if attribute_name == "image_processor": # TODO: @yoni, change logic in v4.52 (when use_fast set to True by default) use_fast = kwargs.get("use_fast", None) if use_fast is None: logger.warning_once( "Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. " "`use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. " "This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`." ) else: use_fast = kwargs.get("use_fast", True) if use_fast and classes[1] is not None: attribute_class = classes[1] else: attribute_class = classes[0] else: attribute_class = cls.get_possibly_dynamic_module(class_name) args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) return args @staticmethod def get_possibly_dynamic_module(module_name): if hasattr(transformers_module, module_name): return getattr(transformers_module, module_name) lookup_locations = [ transformers_module.IMAGE_PROCESSOR_MAPPING, transformers_module.VIDEO_PROCESSOR_MAPPING, transformers_module.TOKENIZER_MAPPING, transformers_module.FEATURE_EXTRACTOR_MAPPING, transformers_module.MODEL_FOR_AUDIO_TOKENIZATION_MAPPING, ] for lookup_location in lookup_locations: for custom_class in lookup_location._extra_content.values(): if isinstance(custom_class, tuple): for custom_subclass in custom_class: if custom_subclass is not None and custom_subclass.__name__ == module_name: return custom_subclass elif custom_class is not None and custom_class.__name__ == module_name: return custom_class else: raise ValueError( f"Could not find module {module_name} in `transformers`. If this is a custom class, " f"it should be registered using the relevant `AutoClass.register()` function so that " f"other functions can find it!" ) @property def model_input_names(self): first_attribute = getattr(self, self.attributes[0]) return getattr(first_attribute, "model_input_names", None) @staticmethod def validate_init_kwargs(processor_config, valid_kwargs): kwargs_from_config = set(processor_config.keys()) valid_kwargs_set = set(valid_kwargs) unused_keys = kwargs_from_config - valid_kwargs_set valid_keys = kwargs_from_config & valid_kwargs_set unused_kwargs = {k: processor_config[k] for k in unused_keys} if unused_keys else {} valid_kwargs = {k: processor_config[k] for k in valid_keys} if valid_keys else {} return unused_kwargs, valid_kwargs @deprecate_kwarg("video_fps", version="4.58", new_name="fps") def apply_chat_template( self, conversation: Union[list[dict[str, str]], list[list[dict[str, str]]]], chat_template: Optional[str] = None, **kwargs: Unpack[AllKwargsForChatTemplate], ) -> str: """ Similar to the `apply_chat_template` method on tokenizers, this method applies a Jinja template to input conversations to turn them into a single tokenizable string. The input is expected to be in the following format, where each message content is a list consisting of text and optionally image or video inputs. One can also provide an image, video, URL or local path which will be used to form `pixel_values` when `return_dict=True`. If not provided, one will get only the formatted text, optionally tokenized text. conversation = [ { "role": "user", "content": [ {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}, {"type": "text", "text": "Please describe this image in detail."}, ], }, ] Args: conversation (`Union[list[Dict, [str, str]], list[list[dict[str, str]]]]`): The conversation to format. chat_template (`Optional[str]`, *optional*): The Jinja template to use for formatting the conversation. If not provided, the tokenizer's chat template is used. """ if chat_template is None: if isinstance(self.chat_template, dict) and "default" in self.chat_template: chat_template = self.chat_template["default"] elif isinstance(self.chat_template, dict): raise ValueError( 'The processor has multiple chat templates but none of them are named "default". You need to specify' " which one to use by passing the `chat_template` argument. Available templates are: " f"{', '.join(self.chat_template.keys())}" ) elif self.chat_template is not None: chat_template = self.chat_template else: raise ValueError( "Cannot use apply_chat_template because this processor does not have a chat template." ) else: if isinstance(self.chat_template, dict) and chat_template in self.chat_template: # It's the name of a template, not a full template string chat_template = self.chat_template[chat_template] else: # It's a template string, render it directly chat_template = chat_template is_tokenizers_fast = hasattr(self, "tokenizer") and self.tokenizer.__class__.__name__.endswith("Fast") if kwargs.get("continue_final_message", False): if kwargs.get("add_generation_prompt", False): raise ValueError( "continue_final_message and add_generation_prompt are not compatible. Use continue_final_message when you want the model to continue the final message, and add_generation_prompt when you want to add a header that will prompt it to start a new assistant message instead." ) if kwargs.get("return_assistant_tokens_mask", False): raise ValueError("continue_final_message is not compatible with return_assistant_tokens_mask.") if kwargs.get("return_assistant_tokens_mask", False): if not is_tokenizers_fast: raise ValueError( "`return_assistant_tokens_mask` is not possible with slow tokenizers. Make sure you have `tokenizers` installed. " "If the error persists, open an issue to support a Fast tokenizer for your model." ) else: kwargs["return_offsets_mapping"] = True # force offset mapping so we can infer token boundaries # Fill sets of kwargs that should be used by different parts of template processed_kwargs = { "mm_load_kwargs": {}, "template_kwargs": {}, } for kwarg_type in processed_kwargs: for key in AllKwargsForChatTemplate.__annotations__[kwarg_type].__annotations__.keys(): kwarg_type_defaults = AllKwargsForChatTemplate.__annotations__[kwarg_type] default_value = getattr(kwarg_type_defaults, key, None) value = kwargs.pop(key, default_value) if value is not None and not isinstance(value, dict): processed_kwargs[kwarg_type][key] = value # Pass unprocessed custom kwargs processed_kwargs["template_kwargs"].update(kwargs) if isinstance(conversation, (list, tuple)) and ( isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "content") ): is_batched = True conversations = conversation else: is_batched = False conversations = [conversation] tokenize = processed_kwargs["template_kwargs"].pop("tokenize", False) return_dict = processed_kwargs["template_kwargs"].pop("return_dict", False) mm_load_kwargs = processed_kwargs["mm_load_kwargs"] if tokenize: batch_images, batch_videos = [], [] batch_audios = [] batch_video_metadata = [] for conversation in conversations: images, videos = [], [] video_metadata = [] for message in conversation: visuals = [content for content in message["content"] if content["type"] in ["image", "video"]] audio_fnames = [ content[key] for content in message["content"] for key in ["audio", "url", "path"] if key in content and content["type"] == "audio" ] image_fnames = [ vision_info[key] for vision_info in visuals for key in ["image", "url", "path", "base64"] if key in vision_info and vision_info["type"] == "image" ] video_fnames = [ vision_info[key] for vision_info in visuals for key in ["video", "url", "path"] if key in vision_info and vision_info["type"] == "video" ] for fname in image_fnames: images.append(load_image(fname)) # Audio models do not accept nested list of audios (yet!) so we construct a flat input audio list if not mm_load_kwargs["load_audio_from_video"]: for fname in audio_fnames: batch_audios.append(load_audio(fname, sampling_rate=mm_load_kwargs["sampling_rate"])) else: for fname in video_fnames: batch_audios.append(load_audio(fname, sampling_rate=mm_load_kwargs["sampling_rate"])) for fname in video_fnames: if isinstance(fname, (list, tuple)) and isinstance(fname[0], str): video = [np.array(load_image(image_fname)) for image_fname in fname] # create a 4D video because `load_video` always returns a 4D array video = np.stack(video) metadata = None logger.warning( "When loading the video from list of images, we cannot infer metadata such as `fps` or `duration`. " "If your model requires metadata during processing, please load the whole video and let the processor sample frames instead." ) else: video, metadata = load_video( fname, backend=mm_load_kwargs["video_load_backend"], ) videos.append(video) video_metadata.append(metadata) # Currently all processors can accept nested list of batches, but not flat list of visuals # So we'll make a batched list of images and let the processor handle it if images: batch_images.append(images) if videos: batch_videos.append(videos) batch_video_metadata.append(video_metadata) prompt, generation_indices = render_jinja_template( conversations=conversations, chat_template=chat_template, **processed_kwargs["template_kwargs"], # different flags such as `return_assistant_mask` **self.tokenizer.special_tokens_map, # tokenizer special tokens are used by some templates ) if not is_batched: prompt = prompt[0] if tokenize: # Tokenizer's `apply_chat_template` never adds special tokens when tokenizing # But processor's `apply_chat_template` didn't have an option to tokenize, so users had to format the prompt # and pass it to the processor. Users thus never worried about special tokens relying on processor handling # everything internally. The below line is to keep BC for that and be able to work with model that have # special tokens in the template (consistent with tokenizers). We dont want to raise warning, it will flood command line # without actionable solution for users single_prompt = prompt[0] if is_batched else prompt if self.tokenizer.bos_token is not None and single_prompt.startswith(self.tokenizer.bos_token): kwargs["add_special_tokens"] = False # Always sample frames by default unless explicitly set to `False` by users. If users do not pass `num_frames`/`video_fps` # sampling should not done for BC. if "do_sample_frames" not in kwargs and ("fps" in kwargs or "num_frames" in kwargs): kwargs["do_sample_frames"] = True out = self( text=prompt, images=batch_images if batch_images else None, videos=batch_videos if batch_videos else None, audio=batch_audios if batch_audios else None, video_metadata=batch_video_metadata, **kwargs, ) if return_dict: if processed_kwargs["template_kwargs"].get("return_assistant_tokens_mask", False): assistant_masks = [] offset_mapping = out.pop("offset_mapping") input_ids = out["input_ids"] for i in range(len(input_ids)): current_mask = [0] * len(input_ids[i]) offsets = offset_mapping[i] offset_starts = [start for start, end in offsets] for assistant_start_char, assistant_end_char in generation_indices[i]: start_pos = bisect.bisect_left(offset_starts, assistant_start_char) end_pos = bisect.bisect_left(offset_starts, assistant_end_char) if not ( start_pos >= 0 and offsets[start_pos][0] <= assistant_start_char < offsets[start_pos][1] ): # start_token is out of bounds maybe due to truncation. continue for token_id in range(start_pos, end_pos if end_pos else len(input_ids[i])): current_mask[token_id] = 1 assistant_masks.append(current_mask) out["assistant_masks"] = assistant_masks out.convert_to_tensors(tensor_type=kwargs.get("return_tensors", None)) return out else: return out["input_ids"] return prompt def post_process_image_text_to_text(self, generated_outputs, skip_special_tokens=True, **kwargs): """ Post-process the output of a vlm to decode the text. Args: generated_outputs (`torch.Tensor` or `np.ndarray`): The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` or `(sequence_length,)`. skip_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. **kwargs: Additional arguments to be passed to the tokenizer's `batch_decode method`. Returns: `list[str]`: The decoded text. """ return self.tokenizer.batch_decode(generated_outputs, skip_special_tokens=skip_special_tokens, **kwargs) def _check_special_mm_tokens(self, text: list[str], text_inputs: "BatchFeature", modalities: list[str]): """ Checks that number of special tokens in text and processed text is same. The count can be different if tokenized text was truncated, leading to issues in model code. """ for modality in modalities: token_str = getattr(self, f"{modality}_token") token_id = getattr(self, f"{modality}_token_id") ids_count = [list(ids).count(token_id) for ids in text_inputs["input_ids"]] text_count = [sample.count(token_str) for sample in text] if ids_count != text_count: raise ValueError( f"Mismatch in `{modality}` token count between text and `input_ids`. Got ids={ids_count} and text={text_count}. " "Likely due to `truncation='max_length'`. Please disable truncation or increase `max_length`." ) ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub) if ProcessorMixin.push_to_hub.__doc__ is not None: ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format( object="processor", object_class="AutoProcessor", object_files="processor files" )