# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Optional from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_fp_quant_available, is_qutlass_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class FPQuantHfQuantizer(HfQuantizer): """ Quantizer for the FP-Quant method. Enables the loading of prequantized models and in-flight quantization of full-precision models. """ requires_calibration = False requires_parameters_quantization = True is_qat_trainable = False required_packages = ["fp_quant"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, device_map, **kwargs): if not torch.cuda.is_available(): raise NotImplementedError( "FPQuant quantization is only supported on GPU. Please use a different quantizer." ) if not is_qutlass_available() and not self.quantization_config.pseudoquantization: raise ImportError( "Using `fp_quant` with real quantization requires a **Blackwell GPU** and qutlass: `git clone https://github.com/IST-DASLab/qutlass.git && cd qutlass && pip install --no-build-isolation .`. You can use `FPQuantConfig(pseudoquantization=True, ...)` to use Triton-based pseudo-quantization. It doesn't provide any speedups but emulates the quantization behavior of the real quantization." ) if self.quantization_config.pseudoquantization: logger.warning( "Using pseudo-quantization for FP-Quant. This doesn't provide any speedups but emulates the quantization behavior of the real quantization." ) if not is_fp_quant_available(): raise ImportError("Using `fp_quant` quantization requires fp_quant: `pip install fp_quant`") if device_map is None: raise ValueError( "You are attempting to load a FPQuant model without setting device_map." " Please set device_map comprised of 'cuda' devices." ) elif isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a FPQuant model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("`torch_dtype` is None. Setting `torch_dtype=torch.bfloat16` for qutlass compatibility.") torch_dtype = torch.bfloat16 elif torch_dtype != torch.bfloat16: raise ValueError( f"Invalid `torch_dtype` {torch_dtype}. fp_quant quantization only supports `torch_dtype=torch.bfloat16`." ) return torch_dtype def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: dict[str, Any], unexpected_keys: Optional[list[str]] = None, ): module, _ = get_module_from_name(model, param_name) # The module holds either: # * `weight` when `store_master_weights=True` # * `qweight` and `scales` when `store_master_weights=False` and `pseudoquantization=False` # * `dqweight` when `store_master_weights=False` and `pseudoquantization=True` if param_name.endswith(".qweight"): # Loading a real quantized checkpoint without master weights module.qweight = torch.nn.Parameter( param_value.to(target_device), requires_grad=False, ) module.weight = None module.dqweight = None return if param_name.endswith(".dqweight"): # Loading a pseudo-quantized checkpoint without master weights module.dqweight = torch.nn.Parameter(param_value.to(target_device)) module.weight = None module.qweight = None module.scales = None return # Loading master weights or an unquantized checkpoint module.weight = torch.nn.Parameter(param_value.to(target_device)) # Let pre-forward handle the quantization and set None where necessary module.pre_forward() if unexpected_keys is not None and param_name in unexpected_keys: unexpected_keys.remove(param_name) def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): from fp_quant import replace_with_fp_quant_linear from ..integrations.fp_quant import adapt_fp_quant_config replace_with_fp_quant_linear( model, fp_quant_linear_config=adapt_fp_quant_config(self.quantization_config), ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def update_missing_keys(self, model, missing_keys: list[str], prefix: str) -> list[str]: from fp_quant import FPQuantLinear fp_quant_names = {name for name, module in model.named_modules() if isinstance(module, FPQuantLinear)} def should_exclude(key: str) -> bool: if key.endswith(".weight") or key.endswith(".bias"): return False full_key = f"{prefix}.{key}" return any(name in key or name in full_key for name in fp_quant_names) return [key for key in missing_keys if not should_exclude(key)] @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): return True def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: dict[str, Any], **kwargs, ) -> bool: from fp_quant import FPQuantLinear module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, FPQuantLinear) and tensor_name in ["weight", "qweight", "dqweight"]: # Only quantize weights of FPQuantLinear modules that are not already quantized return True else: return False