# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/glm4v/modular_glm4v.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_glm4v.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 The ZhipuAI Inc. team and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from dataclasses import dataclass from typing import Any, Callable, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import LayerNorm from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...integrations import use_kernel_forward_from_hub from ...masking_utils import create_causal_mask from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPast, ModelOutput from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling, logging from .configuration_glm4v import Glm4vConfig, Glm4vTextConfig, Glm4vVisionConfig logger = logging.get_logger(__name__) @use_kernel_forward_from_hub("RMSNorm") class Glm4vRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Glm4vRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class Glm4VisionMlp(nn.Module): def __init__(self, config, bias: bool = False): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.out_hidden_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_state): return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) class Glm4vVisionPatchEmbed(nn.Module): def __init__(self, config: Glm4vVisionConfig) -> None: super().__init__() self.patch_size = config.patch_size self.temporal_patch_size = config.temporal_patch_size self.in_channels = config.in_channels self.embed_dim = config.hidden_size kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size] self.proj = nn.Conv3d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: target_dtype = self.proj.weight.dtype hidden_states = hidden_states.view( -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size ) hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) return hidden_states class Glm4vVisionRotaryEmbedding(nn.Module): def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, seqlen: int) -> torch.Tensor: seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) freqs = torch.outer(seq, self.inv_freq) return freqs class Glm4vVisionPatchMerger(nn.Module): def __init__(self, dim: int, context_dim: int, hidden_act: str, bias: bool = False) -> None: super().__init__() self.proj = nn.Linear(dim, dim, bias=bias) self.post_projection_norm = LayerNorm(dim) self.gate_proj = nn.Linear(dim, context_dim, bias=bias) self.up_proj = nn.Linear(dim, context_dim, bias=bias) self.down_proj = nn.Linear(context_dim, dim, bias=bias) self.act1 = nn.GELU() self.act_fn = ACT2FN[hidden_act] def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.proj(hidden_state) hidden_state = self.act1(self.post_projection_norm(hidden_state)) return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) class Glm4vVisionEmbeddings(nn.Module): def __init__(self, config: Glm4vVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, embeddings, lengths, image_shapes, h_coords, w_coords) -> torch.Tensor: """ Forward pass with integrated position encoding adaptation using 2D interpolation. Args: embeddings: Input embeddings tensor lengths (torch.Tensor): Sequence lengths for each image in the batch. image_shapes (torch.Tensor): Tensor of shape [batch_size, 3] representing the image shapes (t, h, w). h_coords (torch.Tensor): Tensor of shape [total_seq] representing the h coordinate for each patch. w_coords (torch.Tensor): Tensor of shape [total_seq] representing the w coordinate for each patch. Returns: torch.Tensor: Embeddings with adapted position encoding added. """ # Get position embedding parameters pos_embed_weight = self.position_embedding.weight hidden_size = pos_embed_weight.shape[1] total_seq = h_coords.shape[0] device = pos_embed_weight.device # Move coordinates to correct device h_coords, w_coords = h_coords.to(device), w_coords.to(device) # Handle empty sequence case if total_seq == 0: adapted_pos_embed = torch.empty(0, hidden_size, device=device, dtype=pos_embed_weight.dtype) else: # Convert inputs to tensors if needed if isinstance(lengths, list): lengths = torch.tensor(lengths, device=device, dtype=torch.long) if not isinstance(image_shapes, torch.Tensor): image_shapes = torch.tensor(image_shapes, device=device, dtype=torch.long) # Prepare 2D position embedding orig_size_sq = pos_embed_weight.shape[0] orig_size = int(orig_size_sq**0.5) pos_embed_2d = ( pos_embed_weight.view(orig_size, orig_size, hidden_size) .permute(2, 0, 1) .unsqueeze(0) .to(device=device, dtype=torch.float32) ) # Calculate target dimensions for each patch target_h = torch.cat([image_shapes[i, 1].repeat(lengths[i]) for i in range(len(lengths))]).to( device=device, dtype=torch.float32 ) target_w = torch.cat([image_shapes[i, 2].repeat(lengths[i]) for i in range(len(lengths))]).to( device=device, dtype=torch.float32 ) # Normalize coordinates to [-1, 1] range for grid_sample h_coords = h_coords.to(device=device, dtype=torch.float32) w_coords = w_coords.to(device=device, dtype=torch.float32) norm_w = ((w_coords + 0.5) / target_w) * 2 - 1 norm_h = ((h_coords + 0.5) / target_h) * 2 - 1 # Create sampling grid grid = torch.stack((norm_w, norm_h), dim=-1).unsqueeze(0).unsqueeze(2) # Perform bicubic interpolation interpolated_embed_fp32 = F.grid_sample( pos_embed_2d, grid, mode="bicubic", align_corners=False, padding_mode="border" ) # Reshape and convert back to original dtype adapted_pos_embed_fp32 = interpolated_embed_fp32.squeeze(0).squeeze(-1).permute(1, 0) adapted_pos_embed = adapted_pos_embed_fp32.to(pos_embed_weight.dtype).to(embeddings.device) # Add adapted position encoding to embeddings embeddings = embeddings + adapted_pos_embed return embeddings def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb_vision( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor]: orig_q_dtype = q.dtype orig_k_dtype = k.dtype q, k = q.float(), k.float() cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) q_embed = q_embed.to(orig_q_dtype) k_embed = k_embed.to(orig_k_dtype) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Glm4vVisionAttention(nn.Module): def __init__(self, config: Glm4vVisionConfig) -> None: super().__init__() self.dim = config.hidden_size self.num_heads = config.num_heads self.head_dim = self.dim // self.num_heads self.num_key_value_groups = 1 # needed for eager attention self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.attention_bias) self.proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.scaling = self.head_dim**-0.5 self.config = config self.attention_dropout = config.attention_dropout self.is_causal = False def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: Optional[torch.Tensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> torch.Tensor: seq_length = hidden_states.shape[0] query_states, key_states, value_states = ( self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) ) if position_embeddings is None: logger.warning_once( "The attention layers in this model are transitioning from computing the RoPE embeddings internally " "through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed " "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be " "removed and `position_embeddings` will be mandatory." ) emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) cos = emb.cos() sin = emb.sin() else: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin) query_states = query_states.transpose(0, 1).unsqueeze(0) key_states = key_states.transpose(0, 1).unsqueeze(0) value_states = value_states.transpose(0, 1).unsqueeze(0) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] if self.config._attn_implementation == "flash_attention_2": # Flash Attention 2: Use cu_seqlens for variable length attention max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() attn_output, _ = attention_interface( self, query_states, key_states, value_states, attention_mask=None, scaling=self.scaling, dropout=0.0 if not self.training else self.attention_dropout, cu_seq_lens_q=cu_seqlens, cu_seq_lens_k=cu_seqlens, max_length_q=max_seqlen, max_length_k=max_seqlen, is_causal=False, **kwargs, ) else: # Other implementations: Process each chunk separately lengths = cu_seqlens[1:] - cu_seqlens[:-1] splits = [ torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states) ] attn_outputs = [ attention_interface( self, q, k, v, attention_mask=None, scaling=self.scaling, dropout=0.0 if not self.training else self.attention_dropout, is_causal=False, **kwargs, )[0] for q, k, v in zip(*splits) ] attn_output = torch.cat(attn_outputs, dim=1) attn_output = attn_output.reshape(seq_length, -1).contiguous() attn_output = self.proj(attn_output) return attn_output class Glm4vVisionBlock(GradientCheckpointingLayer): def __init__(self, config) -> None: super().__init__() self.norm1 = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.norm2 = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.attn = Glm4vVisionAttention(config) self.mlp = Glm4VisionMlp(config, bias=False) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: Optional[torch.Tensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> torch.Tensor: hidden_states = hidden_states + self.attn( self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb, position_embeddings=position_embeddings, **kwargs, ) hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) return hidden_states @auto_docstring class Glm4vPreTrainedModel(PreTrainedModel): config: Glm4vConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Glm4vTextDecoderLayer", "Glm4vVisionBlock"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True _can_compile_fullgraph = True _supports_attention_backend = True class Glm4vVisionModel(Glm4vPreTrainedModel): config: Glm4vVisionConfig _no_split_modules = ["Glm4vVisionBlock"] def __init__(self, config) -> None: super().__init__(config) self.spatial_merge_size = config.spatial_merge_size self.patch_size = config.patch_size self.embeddings = Glm4vVisionEmbeddings(config) self.patch_embed = Glm4vVisionPatchEmbed(config) head_dim = config.hidden_size // config.num_heads self.rotary_pos_emb = Glm4vVisionRotaryEmbedding(head_dim // 2) self.blocks = nn.ModuleList([Glm4vVisionBlock(config) for _ in range(config.depth)]) self.merger = Glm4vVisionPatchMerger( dim=config.out_hidden_size, context_dim=config.intermediate_size, hidden_act=config.hidden_act ) self.post_conv_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.downsample = nn.Conv2d( in_channels=config.hidden_size, out_channels=config.out_hidden_size, kernel_size=config.spatial_merge_size, stride=config.spatial_merge_size, ) self.post_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False self.post_init() def rot_pos_emb(self, grid_thw): pos_ids = [] for t, h, w in grid_thw: hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) hpos_ids = hpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) hpos_ids = hpos_ids.permute(0, 2, 1, 3) hpos_ids = hpos_ids.flatten() wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) wpos_ids = wpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) wpos_ids = wpos_ids.permute(0, 2, 1, 3) wpos_ids = wpos_ids.flatten() pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) pos_ids = torch.cat(pos_ids, dim=0) max_grid_size = grid_thw[:, 1:].max() rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) return rotary_pos_emb, pos_ids def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor: """ Args: hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): The final hidden states of the model. grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): The temporal, height and width of feature shape of each image in LLM. Returns: `torch.Tensor`: hidden_states. """ hidden_states = self.patch_embed(hidden_states) hidden_states = self.post_conv_layernorm(hidden_states) rotary_pos_emb, image_type_ids = self.rot_pos_emb(grid_thw) emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) position_embeddings = (emb.cos(), emb.sin()) cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( dim=0, # Select dtype based on the following factors: # - FA2 requires that cu_seqlens_q must have dtype int32 # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw # See https://github.com/huggingface/transformers/pull/34852 for more information dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, ) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist() hidden_states = self.embeddings(hidden_states, seqlens, grid_thw, image_type_ids[:, 0], image_type_ids[:, 1]) for blk in self.blocks: hidden_states = blk( hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings, ) hidden_states = self.post_layernorm(hidden_states) hidden_states = hidden_states.view( -1, self.spatial_merge_size, self.spatial_merge_size, hidden_states.shape[-1] ) hidden_states = hidden_states.permute(0, 3, 1, 2) hidden_states = self.downsample(hidden_states).view(-1, self.config.out_hidden_size) hidden_states = self.merger(hidden_states) return hidden_states class Glm4vTextRotaryEmbedding(nn.Module): def __init__(self, config: Glm4vTextConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): # In contrast to other models, Glm4vText has different position ids for the grids # So we expand the inv_freq to shape (3, ...) inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions) device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half_llm(x): """Rotates half the hidden dims of the input.""" x1 = x[..., 0::2] x2 = x[..., 1::2] return torch.stack((-x2, x1), dim=-1).flatten(-2) def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1): """Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). Explanation: Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately. Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, height and width) of text embedding is always the same, so the text embedding rotary position embedding has no difference with modern LLMs. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. mrope_section(`List(int)`): Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ mrope_section = mrope_section * 2 cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( unsqueeze_dim ) sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( unsqueeze_dim ) # Interleave them instead of usual shape cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1) sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1) # Keep half or full tensor for later concatenation rotary_dim = cos.shape[-1] q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] # Apply rotary embeddings on the first half or full tensor q_embed = (q_rot * cos) + (rotate_half_llm(q_rot) * sin) k_embed = (k_rot * cos) + (rotate_half_llm(k_rot) * sin) # Concatenate back to full shape q_embed = torch.cat([q_embed, q_pass], dim=-1) k_embed = torch.cat([k_embed, k_pass], dim=-1) return q_embed, k_embed class Glm4vTextAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: Glm4vTextConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.is_causal = True self.attention_dropout = config.attention_dropout self.rope_scaling = config.rope_scaling self.scaling = self.head_dim**-0.5 self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_multimodal_rotary_pos_emb( # diff with Llama query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] ) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights, past_key_value class Glm4vTextMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.activation_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: up_states = self.gate_up_proj(hidden_states) gate, up_states = up_states.chunk(2, dim=-1) up_states = up_states * self.activation_fn(gate) return self.down_proj(up_states) class Glm4vTextDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: Glm4vTextConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Glm4vTextAttention(config, layer_idx) self.mlp = Glm4vTextMLP(config) self.input_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_self_attn_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_mlp_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.post_self_attn_layernorm(hidden_states) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_mlp_layernorm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs @dataclass @auto_docstring( custom_intro=""" Base class for Llava outputs, with hidden states and attentions. """ ) class Glm4vModelOutputWithPast(ModelOutput): r""" past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): The rope index difference between sequence length and multimodal rope. """ last_hidden_state: torch.FloatTensor = None past_key_values: Optional[list[torch.FloatTensor]] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None rope_deltas: Optional[torch.LongTensor] = None @auto_docstring class Glm4vTextModel(Glm4vPreTrainedModel): config: Glm4vTextConfig def __init__(self, config: Glm4vTextConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Glm4vTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = Glm4vTextRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @auto_docstring @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[list[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Union[tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # torch.jit.trace() doesn't support cache objects in the output if use_cache and past_key_values is None and not torch.jit.is_tracing(): past_key_values = DynamicCache() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) # the hard coded `3` is for temporal, height and width. if position_ids is None: position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) elif position_ids.dim() == 2: position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, position_embeddings=position_embeddings, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) @auto_docstring class Glm4vModel(Glm4vPreTrainedModel): base_model_prefix = "" _checkpoint_conversion_mapping = {} config: Glm4vConfig _no_split_modules = ["Glm4vTextDecoderLayer", "Glm4vVisionBlock"] def __init__(self, config): super().__init__(config) self.visual = Glm4vVisionModel._from_config(config.vision_config) self.language_model = Glm4vTextModel._from_config(config.text_config) self.rope_deltas = None # cache rope_deltas here # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def set_decoder(self, decoder): self.language_model = decoder def get_decoder(self): return self.language_model def get_rope_index( self, input_ids: Optional[torch.LongTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> tuple[torch.Tensor, torch.Tensor]: """ Calculate the 3D rope index based on image and video's temporal, height and width in LLM. Explanation: Each embedding sequence contains vision embedding and text embedding or just contains text embedding. For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs. Examples: input_ids: [T T T T T], here T is for text. temporal position_ids: [0, 1, 2, 3, 4] height position_ids: [0, 1, 2, 3, 4] width position_ids: [0, 1, 2, 3, 4] For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part and 1D rotary position embedding for text part. Examples: Temporal (Time): 3 patches, representing different segments of the video in time. Height: 2 patches, dividing each frame vertically. Width: 2 patches, dividing each frame horizontally. We also have some important parameters: fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second. tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity. temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames. interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs. input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100] vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] text temporal position_ids: [101, 102, 103, 104, 105] text height position_ids: [101, 102, 103, 104, 105] text width position_ids: [101, 102, 103, 104, 105] Here we calculate the text start position_ids as the max vision position_ids plus 1. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) """ spatial_merge_size = self.config.vision_config.spatial_merge_size image_token_id = self.config.image_token_id video_start_token_id = self.config.video_start_token_id video_end_token_id = self.config.video_end_token_id mrope_position_deltas = [] if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): total_input_ids = input_ids if attention_mask is None: attention_mask = torch.ones_like(total_input_ids) position_ids = torch.ones( 3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device, ) image_index, video_index = 0, 0 video_group_index = 0 attention_mask = attention_mask.to(total_input_ids.device) for i, input_ids in enumerate(total_input_ids): input_ids = input_ids[attention_mask[i] == 1] input_tokens = input_ids.tolist() input_token_type = [] video_check_flg = False for token in input_tokens: if token == video_start_token_id: video_check_flg = True elif token == video_end_token_id: video_check_flg = False if token == image_token_id and not video_check_flg: input_token_type.append("image") elif token == image_token_id and video_check_flg: input_token_type.append("video") else: input_token_type.append("text") input_type_group = [] for key, group in itertools.groupby(enumerate(input_token_type), lambda x: x[1]): group = list(group) start_index = group[0][0] end_index = group[-1][0] + 1 input_type_group.append((key, start_index, end_index)) llm_pos_ids_list = [] video_frame_num = 1 for modality_type, start_idx, end_idx in input_type_group: st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 if modality_type == "image": t, h, w = ( image_grid_thw[image_index][0], image_grid_thw[image_index][1], image_grid_thw[image_index][2], ) llm_grid_t, llm_grid_h, llm_grid_w = ( t.item(), h.item() // spatial_merge_size, w.item() // spatial_merge_size, ) t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + st_idx) image_index += 1 video_frame_num = 1 elif modality_type == "video": t, h, w = ( video_frame_num, video_grid_thw[video_index][1], video_grid_thw[video_index][2], ) llm_grid_t, llm_grid_h, llm_grid_w = ( t, h.item() // spatial_merge_size, w.item() // spatial_merge_size, ) for t_idx in range(llm_grid_t): t_index = torch.tensor(t_idx).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(1, -1, llm_grid_w).flatten() w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(1, llm_grid_h, -1).flatten() llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + st_idx) video_group_index += 1 if video_group_index >= video_grid_thw[video_index][0]: video_index += 1 video_group_index = 0 video_frame_num += 1 else: text_len = end_idx - start_idx llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) video_frame_num = 1 llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) return position_ids, mrope_position_deltas else: if attention_mask is not None: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] else: position_ids = ( torch.arange(input_ids.shape[1], device=input_ids.device) .view(1, 1, -1) .expand(3, input_ids.shape[0], -1) ) mrope_position_deltas = torch.zeros( [input_ids.shape[0], 1], device=input_ids.device, dtype=input_ids.dtype, ) return position_ids, mrope_position_deltas def get_video_features( self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None ): """ Encodes videos into continuous embeddings that can be forwarded to the language model. Args: pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The tensors corresponding to the input videos. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. """ pixel_values_videos = pixel_values_videos.type(self.visual.dtype) # reshape video_grid_thw -> [b, 3] -> [1, h, w] * frames temp_frames_hw = [] for t, h, w in video_grid_thw: repeated_row = torch.tensor([1, h.item(), w.item()]).unsqueeze(0).repeat(t, 1) temp_frames_hw.append(repeated_row) flattened_video_grid_thw = torch.cat(temp_frames_hw, dim=0) video_embeds = self.visual(pixel_values_videos, grid_thw=flattened_video_grid_thw) split_sizes = (video_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist() video_embeds = torch.split(video_embeds, split_sizes) return video_embeds def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): """ Encodes images into continuous embeddings that can be forwarded to the language model. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The tensors corresponding to the input images. image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. """ pixel_values = pixel_values.type(self.visual.dtype) image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw) split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist() image_embeds = torch.split(image_embeds, split_sizes) return image_embeds @auto_docstring @can_return_tuple def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[list[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, pixel_values_videos: Optional[torch.FloatTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, rope_deltas: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, Glm4vModelOutputWithPast]: r""" image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): The rope index difference between sequence length and multimodal rope. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_embeds = self.get_image_features(pixel_values, image_grid_thw) image_embeds = torch.cat(image_embeds, dim=0) if input_ids is None: image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) image_mask = image_mask.all(-1) else: image_mask = input_ids == self.config.image_token_id n_image_tokens = image_mask.sum() image_mask = image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) n_image_features = image_embeds.shape[0] if not is_torchdynamo_compiling() and n_image_tokens != n_image_features: raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) if pixel_values_videos is not None: video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw) video_embeds = torch.cat(video_embeds, dim=0) if input_ids is None: video_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) video_mask = video_mask.all(-1) else: video_mask = input_ids == self.config.image_token_id n_video_tokens = video_mask.sum() n_video_features = video_embeds.shape[0] video_mask = video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) if not is_torchdynamo_compiling() and n_video_tokens != n_video_features: raise ValueError( f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}" ) video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) if position_ids is None: attention_mask_tensor = ( attention_mask if not isinstance(attention_mask, dict) else attention_mask["full_attention"] ) if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4: attention_mask_tensor = torch.diagonal(attention_mask_tensor[:, 0], dim1=1, dim2=2) # Only apply conversion for floating point tensors (inverted masks) if attention_mask_tensor.dtype.is_floating_point: attention_mask_tensor = attention_mask_tensor / torch.finfo(attention_mask_tensor.dtype).min attention_mask_tensor = (1.0 - attention_mask_tensor).int() # Calculate RoPE index once per generation in the pre-fill stage only. # When compiling, we can't check tensor values thus we check only input length # It is safe to assume that `length!=1` means we're in pre-fill because compiled # models currently cannot do asssisted decoding prefill_compiled_stage = is_torchdynamo_compiling() and ( (input_ids is not None and input_ids.shape[1] != 1) or (inputs_embeds is not None and inputs_embeds.shape[1] != 1) ) prefill_noncompiled_stage = not is_torchdynamo_compiling() and ( (cache_position is not None and cache_position[0] == 0) or (past_key_values is None or past_key_values.get_seq_length() == 0) ) if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None: position_ids, rope_deltas = self.get_rope_index( input_ids, image_grid_thw, video_grid_thw, attention_mask=attention_mask_tensor, ) self.rope_deltas = rope_deltas # then use the prev pre-calculated rope-deltas to get the correct position ids else: batch_size, seq_length, _ = inputs_embeds.shape delta = ( (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) if cache_position is not None else 0 ) position_ids = torch.arange(seq_length, device=inputs_embeds.device) position_ids = position_ids.view(1, -1).expand(batch_size, -1) if cache_position is not None: # otherwise `deltas` is an int `0` delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) position_ids = position_ids.add(delta) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) outputs = self.language_model( input_ids=None, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, **kwargs, ) return Glm4vModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, rope_deltas=self.rope_deltas, ) @dataclass @auto_docstring( custom_intro=""" Base class for Glm4v causal language model (or autoregressive) outputs. """ ) class Glm4vCausalLMOutputWithPast(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): The rope index difference between sequence length and multimodal rope. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[list[torch.FloatTensor]] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None rope_deltas: Optional[torch.LongTensor] = None class Glm4vForConditionalGeneration(Glm4vPreTrainedModel, GenerationMixin): _checkpoint_conversion_mapping = {} _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = Glm4vModel(config) self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) def set_decoder(self, decoder): self.model.set_decoder(decoder) def get_decoder(self): return self.model.get_decoder() def get_video_features( self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None ): return self.model.get_video_features(pixel_values_videos, video_grid_thw) def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): return self.model.get_image_features(pixel_values, image_grid_thw) # Make modules available throught conditional class for BC @property def language_model(self): return self.model.language_model @property def visual(self): return self.model.visual @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[list[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, pixel_values_videos: Optional[torch.FloatTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, rope_deltas: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, Glm4vCausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): The rope index difference between sequence length and multimodal rope. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Glm4vForConditionalGeneration >>> model = Glm4vForConditionalGeneration.from_pretrained("THUDM/GLM-4.1V-9B-Thinking") >>> processor = AutoProcessor.from_pretrained("THUDM/GLM-4.1V-9B-Thinking") >>> messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos]) >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, pixel_values_videos=pixel_values_videos, image_grid_thw=image_grid_thw, video_grid_thw=video_grid_thw, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size) return Glm4vCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, rope_deltas=outputs.rope_deltas, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, pixel_values=None, pixel_values_videos=None, image_grid_thw=None, video_grid_thw=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, position_ids=position_ids, pixel_values=pixel_values, pixel_values_videos=pixel_values_videos, image_grid_thw=image_grid_thw, video_grid_thw=video_grid_thw, use_cache=use_cache, **kwargs, ) # GLM-4.1V position_ids are prepareed with rope_deltas in forward model_inputs["position_ids"] = None if cache_position[0] != 0: model_inputs["pixel_values"] = None model_inputs["pixel_values_videos"] = None return model_inputs def _get_image_nums_and_video_nums( self, input_ids: Optional[torch.LongTensor], inputs_embeds: Optional[torch.Tensor] = None, ) -> tuple[torch.Tensor, torch.Tensor]: """ Get the number of images and videos for each sample to calculate the separation length of the sample tensor. These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Returns: image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) """ if inputs_embeds is not None: is_image = ( inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_start_token_id, dtype=torch.long, device=inputs_embeds.device) ) )[..., 0] is_video_start = ( inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.video_start_token_id, dtype=torch.long, device=inputs_embeds.device) ) )[..., 0] is_video_end = ( inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.video_end_token_id, dtype=torch.long, device=inputs_embeds.device) ) )[..., 0] else: is_image = input_ids == self.config.image_start_token_id is_video_start = input_ids == self.config.video_start_token_id is_video_end = input_ids == self.config.video_end_token_id # Cumulative sum to track if we're inside a video span # We'll assume well-formed video tags (i.e. matching starts and ends) video_level = torch.cumsum(is_video_start.int() - is_video_end.int(), dim=1) inside_video = video_level > 0 # shape (batch_size, seq_length) # Mask out image tokens that are inside video spans standalone_images = is_image & (~inside_video) # Count per batch image_counts = standalone_images.sum(dim=1) video_counts = is_video_start.sum(dim=1) return image_counts, video_counts def _expand_inputs_for_generation( self, expand_size: int = 1, is_encoder_decoder: bool = False, input_ids: Optional[torch.LongTensor] = None, **model_kwargs, ) -> tuple[torch.LongTensor, dict[str, Any]]: # Overwritten -- Support for expanding tensors without a batch size dimension # e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t # pixel_values.shape[0] is sum(seqlen_images for samples) # image_grid_thw.shape[0] is sum(num_images for samples) if expand_size == 1: return input_ids, model_kwargs visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"] def _expand_dict_for_generation_visual(dict_to_expand): image_grid_thw = model_kwargs.get("image_grid_thw", None) video_grid_thw = model_kwargs.get("video_grid_thw", None) image_nums, video_nums = self._get_image_nums_and_video_nums( input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None) ) def _repeat_interleave_samples(x, lengths, repeat_times): samples = torch.split(x, lengths) repeat_args = [repeat_times] + [1] * (x.dim() - 1) result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) return result for key in dict_to_expand: if key == "pixel_values": # split images into samples samples = torch.split(image_grid_thw, list(image_nums)) # compute the sequence length of images for each sample lengths = [torch.prod(sample, dim=1).sum() for sample in samples] dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "image_grid_thw": # get the num of images for each sample lengths = list(image_nums) dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "pixel_values_videos": samples = torch.split(video_grid_thw, list(video_nums)) lengths = [torch.prod(sample, dim=1).sum() for sample in samples] dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "video_grid_thw": lengths = list(video_nums) dict_to_expand[key] = _repeat_interleave_samples( dict_to_expand[key], lengths=lengths, repeat_times=expand_size ) elif key == "second_per_grid_ts": if not isinstance(dict_to_expand[key], list): raise TypeError( f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead." ) tensor = torch.tensor(dict_to_expand[key]) lengths = list(video_nums) tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size) dict_to_expand[key] = tensor.tolist() return dict_to_expand def _expand_dict_for_generation(dict_to_expand): for key in dict_to_expand: if ( key != "cache_position" and dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) and key not in visual_keys ): dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) return dict_to_expand model_kwargs = _expand_dict_for_generation_visual(model_kwargs) if input_ids is not None: input_ids = input_ids.repeat_interleave(expand_size, dim=0) model_kwargs = _expand_dict_for_generation(model_kwargs) if is_encoder_decoder: if model_kwargs.get("encoder_outputs") is None: raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) return input_ids, model_kwargs __all__ = ["Glm4vForConditionalGeneration", "Glm4vModel", "Glm4vPreTrainedModel", "Glm4vTextModel"]