# coding=utf-8 # Copyright 2023 HuggingFace Inc. team and MosaicML NLP team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MPT model.""" import math from typing import Optional, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss from torch.nn import functional as F from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import auto_docstring, logging from .configuration_mpt import MptConfig logger = logging.get_logger(__name__) def build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None): r""" Link to paper: https://huggingface.co/papers/2108.12409 - Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation. This implementation has been copied from the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi: https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292 """ alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length) num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads)) base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.int64, device=device).float() base = base * (alibi_bias_max / num_heads_power_of_2) slopes = 1.0 / torch.pow(2, base) slopes = slopes.view(1, num_heads_power_of_2, 1, 1) if num_heads_power_of_2 != num_heads: slopes = torch.concat([slopes[:, 1::2, ...], slopes[:, ::2, ...]], dim=1)[:, :num_heads, ...] alibi = alibi * slopes return alibi.squeeze(0) class MptAttention(nn.Module): """Multi-head self attention. Using torch or triton attention implementation enables user to also use additive bias. """ def __init__(self, config: MptConfig, layer_idx: Optional[int] = None): super().__init__() self.hidden_size = config.hidden_size self.n_heads = config.n_heads self.max_seq_length = config.max_seq_len self.head_dim = self.hidden_size // self.n_heads self.softmax_scale = config.attn_config.softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads) self.attn_dropout_p = config.attn_config.attn_pdrop self.clip_qkv = config.attn_config.clip_qkv self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.layer_idx = layer_idx def forward( self, hidden_states: torch.Tensor, position_bias: torch.Tensor, past_key_value: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, cache_position: Optional[torch.Tensor] = None, ): batch_size, seq_length = hidden_states.shape[:2] mixed_qkv = self.Wqkv(hidden_states) if self.clip_qkv: mixed_qkv = mixed_qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2) query_states = query_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) key_states = key_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) value_states = value_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) if past_key_value is not None: cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * self.softmax_scale query_length = seq_length if past_key_value is None else seq_length + past_key_value.get_seq_length() if position_bias is not None: if len(position_bias.shape) != 3: raise ValueError(f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}") key_length = key_states.shape[-2] position_bias_query_index = max(0, position_bias.size(1) - query_length) position_bias_key_index = max(0, position_bias.size(2) - key_length) position_bias = position_bias[:, position_bias_query_index:, position_bias_key_index:] attention_scores = attention_scores + position_bias if attention_mask is not None: attention_scores = attention_scores.masked_fill(attention_mask, torch.finfo(query_states.dtype).min) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(value_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attn_dropout_p, training=self.training) context_states = torch.matmul(attn_weights, value_states) context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) attn_output = self.out_proj(context_states) return attn_output, attn_weights class MptMLP(nn.Module): def __init__(self, config: MptConfig): super().__init__() hidden_size = config.hidden_size self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False) self.act = nn.GELU(approximate="none") self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False) self.hidden_dropout = config.attn_config.attn_pdrop def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: hidden_states = self.act(self.up_proj(hidden_states)) intermediate_output = self.down_proj(hidden_states) output = F.dropout(intermediate_output, p=self.hidden_dropout, training=self.training) output = output + residual return output class MptBlock(GradientCheckpointingLayer): def __init__(self, config: MptConfig, layer_idx: Optional[int] = None): super().__init__() hidden_size = config.hidden_size self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) # backward compatibility with weights on the Hub self.norm_1.bias = None self.num_heads = config.n_heads self.attn = MptAttention(config, layer_idx) self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) # backward compatibility with weights on the Hub self.norm_2.bias = None self.ffn = MptMLP(config) self.dropout_rate = config.attn_config.attn_pdrop self.resid_attn_dropout = nn.Dropout(self.dropout_rate) def forward( self, hidden_states: torch.Tensor, position_bias: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Cache] = None, use_cache: bool = False, output_attentions: bool = False, cache_position: Optional[torch.Tensor] = None, ): # hidden_states: [batch_size, seq_length, hidden_size] # Layer norm at the beginning of the transformer layer. layernorm_output = self.norm_1(hidden_states) residual = hidden_states # Self attention. attn_outputs, attn_weights = self.attn( layernorm_output, position_bias=position_bias, attention_mask=attention_mask, past_key_value=layer_past, cache_position=cache_position, ) hidden_states = self.resid_attn_dropout(attn_outputs) + residual layernorm_output = self.norm_2(hidden_states) # Get residual residual = hidden_states # MLP. output = self.ffn(layernorm_output, residual) return output, attn_weights @auto_docstring class MptPreTrainedModel(PreTrainedModel): config: MptConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["MptBlock"] _keys_to_ignore_on_load_missing = [r"lm_head.*."] def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): if module.bias is not None: module.bias.data.zero_() module.weight.data.fill_(1.0) @staticmethod def _convert_to_mpt_cache( past_key_value: tuple[tuple[torch.Tensor, torch.Tensor]], ) -> tuple[tuple[torch.Tensor, torch.Tensor]]: """ Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...])) """ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape batch_size_times_num_heads = batch_size * num_heads # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] return tuple( ( layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length), layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) @auto_docstring class MptModel(MptPreTrainedModel): def __init__(self, config: MptConfig): super().__init__(config) self.hidden_size = config.hidden_size self.num_heads = config.n_heads # Embedding + LN Embedding self.wte = nn.Embedding(config.vocab_size, self.hidden_size) # Transformer blocks self.blocks = nn.ModuleList([MptBlock(config, layer_idx=i) for i in range(config.n_layers)]) # Final Layer Norm self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon) # backward compatibility with weights on the Hub self.norm_f.bias = None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def build_mpt_alibi_tensor(self, num_heads, sequence_length, alibi_bias_max=8, device=None): return build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max, device) def set_input_embeddings(self, new_embeddings: torch.Tensor): self.wte = new_embeddings @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[tuple[tuple[torch.Tensor, torch.Tensor], ...], Cache]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, # NOOP kwargs, for now ) -> Union[tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.wte(input_ids) return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): return_legacy_cache = True logger.warning_once( "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. " "You should pass an instance of `DynamicCache` instead, e.g. " "`past_key_values=DynamicCache.from_legacy_cache(past_key_values)`." ) past_key_values = DynamicCache.from_legacy_cache(past_key_values) hidden_states = inputs_embeds all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None # Compute alibi tensor: check build_alibi_tensor documentation past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 seq_length_with_past = seq_length + past_key_values_length if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) alibi = self.build_mpt_alibi_tensor(self.num_heads, self.config.max_seq_len, device=hidden_states.device) causal_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) causal_mask = causal_mask.bool() for block in self.blocks: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = block( hidden_states, layer_past=past_key_values, attention_mask=causal_mask, use_cache=use_cache, output_attentions=output_attentions, position_bias=alibi, cache_position=cache_position, ) hidden_states = outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (outputs[1],) # Add last hidden state hidden_states = self.norm_f(hidden_states) if return_legacy_cache: past_key_values = past_key_values.to_legacy_cache() if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @auto_docstring( custom_intro=""" The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """ ) class MptForCausalLM(MptPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: MptConfig): super().__init__(config) self.transformer = MptModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[tuple[tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, ) -> Union[tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Flatten the tokens loss = self.loss_function( lm_logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @auto_docstring( custom_intro=""" The MPT Model transformer with a sequence classification head on top (linear layer). [`MptForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """ ) class MptForSequenceClassification(MptPreTrainedModel): def __init__(self, config: MptConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = MptModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[tuple[tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @auto_docstring class MptForTokenClassification(MptPreTrainedModel): def __init__(self, config: MptConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = MptModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[tuple[tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[tuple[torch.Tensor], TokenClassifierOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @auto_docstring class MptForQuestionAnswering(MptPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = MptModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, QuestionAnsweringModelOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "MptForCausalLM", "MptModel", "MptPreTrainedModel", "MptForSequenceClassification", "MptForTokenClassification", "MptForQuestionAnswering", ]