from typing import Callable, Optional import torch import torch.nn as nn from transformers.utils.generic import TransformersKwargs from ...cache_utils import Cache from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import logging from ..llama.modeling_llama import LlamaPreTrainedModel, LlamaRMSNorm, eager_attention_forward from ..olmo.configuration_olmo import OlmoConfig from ..olmo.modeling_olmo import ( OlmoAttention, OlmoDecoderLayer, OlmoForCausalLM, OlmoModel, OlmoRotaryEmbedding, apply_rotary_pos_emb, ) logger = logging.get_logger(__name__) class Olmo2Config(OlmoConfig): r""" This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50304): Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Olmo2Model`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 50279): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. ```python >>> from transformers import Olmo2Model, Olmo2Config >>> # Initializing a Olmo2 7B style configuration >>> configuration = Olmo2Config() >>> # Initializing a model from the Olmo2 7B style configuration >>> model = Olmo2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "olmo2" base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.self_attn.k_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.self_attn.v_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=50304, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, use_cache=True, pad_token_id=1, bos_token_id=None, eos_token_id=50279, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, rms_norm_eps=1e-5, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, num_key_value_heads=num_key_value_heads, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, initializer_range=initializer_range, use_cache=use_cache, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, rope_theta=rope_theta, rope_scaling=rope_scaling, attention_bias=attention_bias, attention_dropout=attention_dropout, **kwargs, ) self.rms_norm_eps = rms_norm_eps del self.clip_qkv # OLMo2 RMS norm is identical to Llama RMS norm except: # - Weight and hidden states are multiplied before converting back to the input dtype, rather than after. class Olmo2RMSNorm(LlamaRMSNorm): def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return (self.weight * hidden_states).to(input_dtype) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Olmo2 attention is identical to OLMo attention except: # - Norm is applied to attention queries and keys. # - No qkv clipping. class Olmo2Attention(OlmoAttention): def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None): super().__init__(config, layer_idx=layer_idx) self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps) self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_norm(self.q_proj(hidden_states)) key_states = self.k_norm(self.k_proj(hidden_states)) value_states = self.v_proj(hidden_states) query_states = query_states.view(hidden_shape).transpose(1, 2) key_states = key_states.view(hidden_shape).transpose(1, 2) value_states = value_states.view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights # The OLMo2 layers are identical to those of the OLMo model except: # - RMSNorm is used instead of standard layer norm. # - Norm is applied after attention/feedforward rather than before. class Olmo2DecoderLayer(OlmoDecoderLayer): def __init__(self, config: Olmo2Config, layer_idx: int): super().__init__(config, layer_idx=layer_idx) self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx) del self.input_layernorm def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states return hidden_states class Olmo2RotaryEmbedding(OlmoRotaryEmbedding): pass class Olmo2PreTrainedModel(LlamaPreTrainedModel): pass # The OLMo2 model is identical to the OLMo model, except RMSNorm is used instead of # standard layer norm for the output norm. class Olmo2Model(OlmoModel): def __init__(self, config: Olmo2Config): super().__init__(config) self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layers = nn.ModuleList( [Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) # The heads now only need to redefine the model inside to the correct `RobertaModel` class Olmo2ForCausalLM(OlmoForCausalLM): pass __all__ = [ "Olmo2Config", "Olmo2ForCausalLM", "Olmo2Model", "Olmo2PreTrainedModel", # noqa: F822 ]