# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math from typing import Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas, dtype=np.float32) class PNDMScheduler(SchedulerMixin, ConfigMixin): @register_to_config def __init__( self, num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", tensor_format="pt", skip_prk_steps=False, ): if beta_schedule == "linear": self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = np.cumprod(self.alphas, axis=0) self.one = np.array(1.0) # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 # running values self.cur_model_output = 0 self.counter = 0 self.cur_sample = None self.ets = [] # setable values self.num_inference_steps = None self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self._offset = 0 self.prk_timesteps = None self.plms_timesteps = None self.timesteps = None self.tensor_format = tensor_format self.set_format(tensor_format=tensor_format) def set_timesteps(self, num_inference_steps, offset=0): self.num_inference_steps = num_inference_steps self._timesteps = list( range(0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps) ) self._offset = offset self._timesteps = [t + self._offset for t in self._timesteps] if self.config.skip_prk_steps: # for some models like stable diffusion the prk steps can/should be skipped to # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51 self.prk_timesteps = [] self.plms_timesteps = list(reversed(self._timesteps[:-1] + self._timesteps[-2:-1] + self._timesteps[-1:])) else: prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile( np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order ) self.prk_timesteps = list(reversed(prk_timesteps[:-1].repeat(2)[1:-1])) self.plms_timesteps = list(reversed(self._timesteps[:-3])) self.timesteps = self.prk_timesteps + self.plms_timesteps self.counter = 0 self.set_format(tensor_format=self.tensor_format) def step( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], ): if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps: return self.step_prk(model_output=model_output, timestep=timestep, sample=sample) else: return self.step_plms(model_output=model_output, timestep=timestep, sample=sample) def step_prk( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], ): """ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the solution to the differential equation. """ diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2 prev_timestep = max(timestep - diff_to_prev, self.prk_timesteps[-1]) timestep = self.prk_timesteps[self.counter // 4 * 4] if self.counter % 4 == 0: self.cur_model_output += 1 / 6 * model_output self.ets.append(model_output) self.cur_sample = sample elif (self.counter - 1) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 2) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 3) % 4 == 0: model_output = self.cur_model_output + 1 / 6 * model_output self.cur_model_output = 0 # cur_sample should not be `None` cur_sample = self.cur_sample if self.cur_sample is not None else sample prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output) self.counter += 1 return {"prev_sample": prev_sample} def step_plms( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], ): """ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple times to approximate the solution. """ if not self.config.skip_prk_steps and len(self.ets) < 3: raise ValueError( f"{self.__class__} can only be run AFTER scheduler has been run " "in 'prk' mode for at least 12 iterations " "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py " "for more information." ) prev_timestep = max(timestep - self.config.num_train_timesteps // self.num_inference_steps, 0) if self.counter != 1: self.ets.append(model_output) else: prev_timestep = timestep timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps if len(self.ets) == 1 and self.counter == 0: model_output = model_output self.cur_sample = sample elif len(self.ets) == 1 and self.counter == 1: model_output = (model_output + self.ets[-1]) / 2 sample = self.cur_sample self.cur_sample = None elif len(self.ets) == 2: model_output = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output) self.counter += 1 return {"prev_sample": prev_sample} def _get_prev_sample(self, sample, timestep, timestep_prev, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation # Notation ( -> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = self.alphas_cumprod[timestep + 1 - self._offset] alpha_prod_t_prev = self.alphas_cumprod[timestep_prev + 1 - self._offset] beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample def __len__(self): return self.config.num_train_timesteps