# coding=utf-8 # Copyright 2025 Apple Inc. and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pytorch implementation of AIMv2 Model""" import math from typing import Optional import torch import torch.nn.functional as F from torch import nn from ...masking_utils import create_causal_mask from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( auto_docstring, can_return_tuple, ) from ..clip.modeling_clip import CLIPModel, CLIPTextEmbeddings, _get_vector_norm from ..llama.modeling_llama import LlamaMLP, LlamaRMSNorm from ..siglip.configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig from ..siglip.modeling_siglip import SiglipAttention, SiglipEncoder, SiglipOutput class Aimv2VisionConfig(SiglipVisionConfig): r""" This is the configuration class to store the configuration of a [`Aimv2VisionModel`]. It is used to instantiate a AIMv2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the AIMv2 [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2816): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. qkv_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the queries, keys and values. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the Linear layers or Not. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the for initializing all weight matrices. use_head (`str`, *optional*, defaults to `True`): Whether to use Attention Pooling Head or Not. is_native (`str`, *optional*, defaults to `False`): Whether to use ckpt trained for image native resolution or not. Example: ```python >>> from transformers import SiglipVisionConfig, SiglipVisionModel >>> # Initializing a Aimv2VisionConfig with apple/aimv2-large-patch14-224 style configuration >>> configuration = Aimv2VisionConfig() >>> # Initializing a Aimv2VisionModel (with random weights) from the apple/aimv2-large-patch14-224 style configuration >>> model = Aimv2VisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" def __init__( self, hidden_size: int = 1024, intermediate_size: int = 2816, num_hidden_layers: int = 24, num_attention_heads: int = 8, num_channels: int = 3, image_size: int = 224, patch_size: int = 14, rms_norm_eps: float = 1e-5, attention_dropout: float = 0.0, qkv_bias: bool = False, mlp_bias: bool = False, hidden_act: str = "silu", initializer_range: float = 0.02, use_head: bool = True, is_native: bool = False, **kwargs, ): super().__init__( hidden_size=hidden_size, intermediate_size=intermediate_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, hidden_act=hidden_act, num_channels=num_channels, image_size=image_size, patch_size=patch_size, qkv_bias=qkv_bias, **kwargs, ) self.use_head = use_head self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.qkv_bias = qkv_bias self.rms_norm_eps = rms_norm_eps self.is_native = is_native del self.layer_norm_eps class Aimv2TextConfig(SiglipTextConfig): r""" This is the configuration class to store the configuration of a [`Aimv2TextModel`]. It is used to instantiate a AIMv2 text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the AIMv2 [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the AIMv2 text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Aimv2Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the Transformer encoder. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. qkv_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the queries, keys and values. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the Linear layers or Not. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. pad_token_id (`int`, *optional*, defaults to 1): The id of the padding token in the vocabulary. bos_token_id (`int`, *optional*, defaults to 49406): The id of the beginning-of-sequence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 49407): The id of the end-of-sequence token in the vocabulary. max_position_embeddings (`int`, *optional*, defaults to 77): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the for initializing all weight matrices. """ def __init__( self, vocab_size: int = 49408, hidden_size: int = 768, intermediate_size: int = 2048, num_hidden_layers: int = 12, num_attention_heads: int = 6, rms_norm_eps: float = 1e-5, attention_dropout: float = 0.0, qkv_bias: bool = False, mlp_bias: bool = False, hidden_act: str = "silu", pad_token_id: Optional[int] = None, bos_token_id: Optional[int] = None, eos_token_id: int = 49407, max_position_embeddings: int = 77, initializer_range: bool = 0.02, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.qkv_bias = qkv_bias self.rms_norm_eps = rms_norm_eps del self.bos_token_id del self.pad_token_id del self.projection_size del self.layer_norm_eps class Aimv2Config(SiglipConfig): r""" [`Aimv2Config`] is the configuration class to store the configuration of a [`Aimv2Model`]. It is used to instantiate a AIMv2 model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the AIMv2 [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Aimv2TextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Aimv2VisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimensionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The initial value of the *logit_scale* parameter. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import Aimv2Config, Aimv2Model >>> # Initializing a Aimv2Config with apple/aimv2-large-patch14-224-lit style configuration >>> configuration = Aimv2Config() >>> # Initializing a Aimv2Model (with random weights) from the apple/aimv2-large-patch14-224-lit style configuration >>> model = Aimv2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a Aimv2Config from a Aimv2TextConfig and a Aimv2VisionConfig >>> from transformers import Aimv2TextConfig, Aimv2VisionConfig >>> # Initializing a AIMv2Text and AIMv2Vision configuration >>> config_text = Aimv2TextConfig() >>> config_vision = Aimv2VisionConfig() >>> config = Aimv2Config(text_config=config_text, vision_config=config_vision) ```""" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs ): super().__init__(text_config, vision_config, **kwargs) self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.max_logit_scale = 100.0 del self.initializer_factor class Aimv2Output(SiglipOutput): pass class Aimv2RMSNorm(LlamaRMSNorm): pass class Aimv2MLP(LlamaMLP): pass class Aimv2VisionEmbeddings(nn.Module): def __init__(self, config: Aimv2VisionConfig): super().__init__() self.config = config self.patch_size = config.patch_size self.patch_embed = nn.Conv2d( config.num_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size ) self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) num_patches = (config.image_size // config.patch_size) ** 2 if not self.config.is_native: self.position_embedding = nn.Embedding(num_patches, config.hidden_size) self.register_buffer("position_ids", torch.arange(num_patches).expand((1, -1)), persistent=False) @staticmethod def build_2d_sincos_position_embedding( height, width, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32 ) -> torch.Tensor: grid_w = torch.arange(int(width), dtype=dtype, device=device) grid_h = torch.arange(int(height), dtype=dtype, device=device) grid_h, grid_w = torch.meshgrid(grid_w, grid_h, indexing="xy") pos_dim = embed_dim // 4 omega = torch.arange(pos_dim, dtype=dtype, device=device) / pos_dim omega = 1.0 / (temperature**omega) out_h = grid_h.flatten()[..., None] @ omega[None, :] out_w = grid_w.flatten()[..., None] @ omega[None, :] return torch.concat([out_h.sin(), out_h.cos(), out_w.sin(), out_w.cos()], dim=1)[None, :, :] def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: _, _, height, width = pixel_values.size() hidden_states = self.patch_embed(pixel_values).flatten(2).transpose(1, 2) hidden_states = self.rms_norm(hidden_states) if self.config.is_native: pos_embed = self.build_2d_sincos_position_embedding( height // self.patch_size, width // self.patch_size, embed_dim=self.config.hidden_size, device=hidden_states.device, dtype=hidden_states.dtype, ) else: pos_embed = self.position_embedding(self.position_ids) hidden_states = hidden_states + pos_embed return hidden_states class Aimv2TextEmbeddings(CLIPTextEmbeddings): pass class Aimv2Attention(SiglipAttention): def __init__(self, config): super().__init__(config) self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) class Aimv2EncoderLayer(GradientCheckpointingLayer): def __init__(self, config: Aimv2VisionConfig): super().__init__() self.attention = Aimv2Attention(config) self.ffn = Aimv2MLP(config) self.rms_norm1 = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) self.rms_norm2 = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> tuple[torch.Tensor, torch.Tensor]: norm_hidden_states = self.rms_norm1(hidden_states) attn_output, attn_weights = self.attention(hidden_states=norm_hidden_states, attention_mask=attention_mask) hidden_states = hidden_states + attn_output norm_hidden_states = self.rms_norm2(hidden_states) mlp_output = self.ffn(norm_hidden_states) hidden_states = hidden_states + mlp_output return (hidden_states, attn_weights) if output_attentions else (hidden_states, None) class Aimv2Encoder(SiglipEncoder): pass class Aimv2AttentionPoolingHead(nn.Module): def __init__(self, config: Aimv2VisionConfig): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.qkv_bias) self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.qkv_bias) self.cls_token = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) self.output_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, seq_len, hidden_dim = hidden_states.shape cls_token = self.cls_token.expand(batch_size, -1, -1) key = self.k_proj(hidden_states).reshape(batch_size, seq_len, self.num_heads, hidden_dim // self.num_heads) value = self.v_proj(hidden_states).reshape(batch_size, seq_len, self.num_heads, hidden_dim // self.num_heads) query = cls_token.reshape(batch_size, 1, self.num_heads, hidden_dim // self.num_heads) key = key.permute(0, 2, 1, 3) value = value.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3) attn_output = F.scaled_dot_product_attention(query, key, value) attn_output = attn_output.transpose(1, 2).reshape(batch_size, 1, hidden_dim) attn_output = attn_output.mean(dim=1) output = self.output_proj(attn_output) return output @auto_docstring class Aimv2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. The model is only intended for inference and doesn't support finetuning. """ config: Aimv2Config base_model_prefix = "aimv2" supports_gradient_checkpointing = True _no_split_modules = [ "Aimv2EncoderLayer", "Aimv2AttentionPoolingHead", "Aimv2VisionEmbeddings", "Aimv2TextEmbeddings", ] _supports_sdpa = True _supports_flash_attn = True _supports_flex_attn = True def _init_weights(self, module): super()._init_weights(module) if hasattr(module, "logit_scale"): if isinstance(module.logit_scale, nn.Parameter): module.logit_scale.data.fill_(math.log(1 / 0.07)) elif isinstance(module, Aimv2AttentionPoolingHead): module.cls_token.data.normal_(mean=0.0, std=self.config.initializer_range) @auto_docstring( custom_intro=""" The Vision model from AIMv2 without any head or projection on top. """ ) class Aimv2VisionModel(Aimv2PreTrainedModel): config: Aimv2VisionConfig main_input_name = "pixel_values" def __init__(self, config: Aimv2VisionConfig): super().__init__(config) self.config = config self.embeddings = Aimv2VisionEmbeddings(config) self.encoder = Aimv2Encoder(config) # The only change from SiglipVisionTransformer is, layernorm -> rms_norm. self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) self.use_head = config.use_head if self.use_head: self.head = Aimv2AttentionPoolingHead(config) self.post_init() def get_input_embeddings(self) -> nn.Module: return self.embeddings.patch_embed @can_return_tuple @auto_docstring def forward( self, pixel_values, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Siglip2VisionModel >>> model = Aimv2VisionModel.from_pretrained("apple/aimv2-large-patch14-native") >>> processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-native") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled features ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.rms_norm(last_hidden_state) pooler_output = self.head(last_hidden_state) if self.use_head else None return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @auto_docstring( custom_intro=""" The text model from AIMv2 without any head or projection on top. """ ) class Aimv2TextModel(Aimv2PreTrainedModel): main_input_name = "input_ids" def __init__(self, config: Aimv2TextConfig): super().__init__(config) self.config = config self.embeddings = Aimv2TextEmbeddings(config) self.encoder = Aimv2Encoder(config) self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) self.eos_token_id = config.eos_token_id self.post_init() def get_input_embeddings(self) -> nn.Module: return self.embeddings.token_embedding def set_input_embeddings(self, value): self.embeddings.token_embedding = value @can_return_tuple @auto_docstring def forward( self, input_ids, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings(input_ids) batch_size, seq_len, _ = hidden_states.shape cache_position = torch.arange(seq_len, dtype=torch.long, device=hidden_states.device) position_ids = cache_position.unsqueeze(0).expand(batch_size, -1) if attention_mask is not None: attention_mask = create_causal_mask( config=self.config, input_embeds=hidden_states, position_ids=position_ids, attention_mask=attention_mask, cache_position=cache_position, past_key_values=None, ) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.rms_norm(last_hidden_state) # Get pooled output pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id).int().argmax(dim=-1), ] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @auto_docstring class Aimv2Model(CLIPModel, nn.Module): def __init__(self, config: Aimv2Config): nn.Module().__init__(config) self.projection_dim = config.projection_dim self.vision_embed_dim = config.vision_config.hidden_size self.text_embed_dim = config.text_config.hidden_size self.vision_model = Aimv2VisionModel._from_config(config.vision_config) self.text_model = Aimv2TextModel._from_config(config.text_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) self.max_log_logit_scale = math.log(config.max_logit_scale) self.post_init() @auto_docstring @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Aimv2Output: r""" Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Aimv2Model >>> model = Aimv2Model.from_pretrained("apple/aimv2-large-patch14-224-lit") >>> processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) image_embeds = vision_outputs.pooler_output image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs.pooler_output text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / _get_vector_norm(image_embeds) text_embeds = text_embeds / _get_vector_norm(text_embeds) logit_scale = self.logit_scale.clamp(0.0, self.max_log_logit_scale).exp().to(text_embeds.device) logits_per_text = (logit_scale * text_embeds) @ image_embeds.t() logits_per_image = logits_per_text.t() return Aimv2Output( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) __all__ = [ "Aimv2Config", "Aimv2VisionConfig", "Aimv2TextConfig", "Aimv2VisionModel", "Aimv2Model", "Aimv2PreTrainedModel", "Aimv2TextModel", ]