# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import cached_property from typing import Optional, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from ...cache_utils import Cache from ...generation import GenerationMixin from ...modeling_outputs import CausalLMOutputWithPast from ...modeling_utils import PreTrainedModel from ...processing_utils import Unpack from ...utils import auto_docstring, can_return_tuple, logging from ..chameleon.modeling_chameleon import ( ChameleonPreTrainedModel, ChameleonVQVAEEncoderConvDownsample, ) from ..llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, TransformersKwargs from ..siglip.modeling_siglip import SiglipAttention from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig logger = logging.get_logger(__name__) class Emu3Attention(LlamaAttention): pass # Has extra dropout which no other model in the library has class Emu3DecoderLayer(LlamaDecoderLayer): def __init__(self, config: Emu3Config, layer_idx: int): super().__init__(config, layer_idx) self.dropout = nn.Dropout(config.attention_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + self.dropout(hidden_states) residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.dropout(hidden_states) return hidden_states class Emu3VQVAEVectorQuantizer(nn.Module): """ A module for vector quantization using learned embedding vectors. This module implements the quantization process similar to te one described in the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous input vectors into discrete codebook vectors, which are learned during training. Current implementation improves over previous ones by avoiding costly matrix multiplications and allowing for post-hoc remapping of indices. """ def __init__(self, config: Emu3VQVAEConfig): super().__init__() self.embedding = nn.Embedding(config.codebook_size, config.embed_dim) self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size) def forward(self, hidden_state: torch.Tensor): batch_size, temporal, channels, height, width = hidden_state.shape hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous() hidden_state_flattened = hidden_state.view(-1, channels) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) embedding_sum = torch.sum(self.embedding.weight**2, dim=1) # "bd,dn->bn", distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1)) distances = hidden_state_sum + embedding_sum - distances min_encoding_indices = torch.argmin(distances, dim=1) min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width) return min_encoding_indices class Emu3VQVAEEncoderConvDownsample(ChameleonVQVAEEncoderConvDownsample): pass class Emu3VQVAEEncoderConvUpsample(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, hidden_states): hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAEConv3d(nn.Module): def __init__( self, in_channel: int, out_channel: int, kernel_size: tuple[int], stride: tuple[int], ): super().__init__() padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])] self.padding = () for pad_size in padding_sizes[::-1]: self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2) self.padding += (2, 0) self.conv = nn.Conv3d( in_channel, out_channel, kernel_size, stride=stride, ) def forward(self, hidden_states: torch.Tensor): hidden_states = F.pad(hidden_states, self.padding) hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAESpatialNorm(nn.Module): def __init__( self, in_channels: int, out_channels: int, ): super().__init__() self.norm_layer = nn.GroupNorm( num_channels=out_channels, num_groups=32, eps=1e-6, affine=True, ) self.conv_y = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) self.conv_b = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest") hidden_states = self.norm_layer(hidden_states) hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states) return hidden_states class Emu3VQVAETemporalUpsample(nn.Module): def __init__( self, in_channel: int, out_channel: int, ): super().__init__() self.conv = Emu3VQVAEConv3d( in_channel, out_channel, kernel_size=(3, 3, 3), stride=(1, 1, 1), ) def forward(self, hidden_states: torch.Tensor): batch_size, channels, temporal, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal) hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous() hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAETemporalDownsample(nn.Module): def __init__( self, in_channel: int, out_channel: int, ): super().__init__() self.conv = Emu3VQVAEConv3d( in_channel, out_channel, kernel_size=(4, 3, 3), stride=(2, 1, 1), ) def forward(self, hidden_states: torch.Tensor): hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAETemporalResnetBlock(nn.Module): def __init__( self, in_channels, out_channels=None, ): super().__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.norm1 = nn.BatchNorm3d(in_channels) self.conv1 = Emu3VQVAEConv3d( in_channels, out_channels, kernel_size=(3, 3, 3), stride=(1, 1, 1), ) self.norm2 = nn.BatchNorm3d(out_channels) self.conv2 = Emu3VQVAEConv3d( out_channels, out_channels, kernel_size=(3, 3, 3), stride=(1, 1, 1), ) if self.in_channels != self.out_channels: self.nin_shortcut = nn.Conv3d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) def forward(self, hidden_states): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels: residual = self.nin_shortcut(residual) return residual + hidden_states class Emu3VQVAEResnetBlock(nn.Module): def __init__( self, in_channels: int, out_channels: Optional[int] = None, quant_channels: Optional[int] = None, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.quant_channels = quant_channels if quant_channels is None: self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True) else: self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels) self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels) self.conv1 = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1, ) self.conv2 = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, ) if self.in_channels != self.out_channels: self.nin_shortcut = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None): norm_args = () if self.quant_channels is None else (quant_channels,) residual = hidden_states hidden_states = self.norm1(hidden_states, *norm_args) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states, *norm_args) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels: residual = self.nin_shortcut(residual) return residual + hidden_states class Emu3VQVAEAttentionBlock(SiglipAttention): def __init__(self, config: Emu3VQVAEConfig): super().__init__(config) # for compatibility with the attention interface self.num_key_value_groups = 1 class Emu3VQVAEGroupNorm(nn.GroupNorm): """ Same as the torch GroupNorm with the only difference that this ones accepts an optional kwarg `quant_states` which is not used. This class makes it easier to use SpatialNorm or GroupNorm without conditionals """ def __init__(self, **kwargs): super().__init__(**kwargs) def forward(self, input, quant_states=None): return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps) class Emu3VQVAEMiddleBlock(nn.Module): def __init__(self, config, in_channels, quant_channels=None): super().__init__() self.block_1 = Emu3VQVAEResnetBlock( in_channels=in_channels, out_channels=in_channels, quant_channels=quant_channels, ) self.attn_1 = Emu3VQVAEAttentionBlock(config) if quant_channels is None: self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) else: self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels) self.block_2 = Emu3VQVAEResnetBlock( in_channels=in_channels, out_channels=in_channels, quant_channels=quant_channels, ) def forward(self, hidden_states: torch.FloatTensor, quant_states: Optional[torch.FloatTensor] = None): hidden_states = self.block_1(hidden_states, quant_states) residual = hidden_states hidden_states = self.attn_norm(hidden_states, quant_states) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) hidden_states = self.attn_1(hidden_states)[0] hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = residual + hidden_states hidden_states = self.block_2(hidden_states, quant_states) return hidden_states class Emu3VQVAEDownBlock(nn.Module): def __init__(self, config): super().__init__() self.num_resolutions = len(config.channel_multiplier) self.num_res_blocks = config.num_res_blocks base_channels = config.base_channels channel_multiplier = config.channel_multiplier in_channel_multiplier = (1,) + tuple(channel_multiplier) self.in_channel_multiplier = in_channel_multiplier self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() attn_norms = nn.ModuleList() block_in = base_channels * in_channel_multiplier[i_level] block_out = base_channels * channel_multiplier[i_level] for i_block in range(self.num_res_blocks): block.append( Emu3VQVAEResnetBlock( in_channels=block_in, out_channels=block_out, ) ) block_in = block_out if config.attn_resolutions is not None and i_level in config.attn_resolutions: attn.append(Emu3VQVAEAttentionBlock(config)) attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True)) down = nn.Module() down.block = block down.attn = attn down.attn_norms = attn_norms if i_level != self.num_resolutions - 1: down.downsample = Emu3VQVAEEncoderConvDownsample(block_in) self.down.append(down) def forward(self, hidden_states: torch.FloatTensor): for i_level, blocks in enumerate(self.down): for i_block in range(self.num_res_blocks): hidden_states = blocks.block[i_block](hidden_states) if len(blocks.attn) > 0: residual = hidden_states hidden_states = blocks.attn_norms[i_block](hidden_states) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) hidden_states = blocks.attn[i_block](hidden_states)[0] hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = residual + hidden_states if i_level != self.num_resolutions - 1: hidden_states = blocks.downsample(hidden_states) return hidden_states class Emu3VQVAEUpBlock(nn.Module): def __init__(self, config): super().__init__() self.num_resolutions = len(config.channel_multiplier) self.num_res_blocks = config.num_res_blocks quant_channels = config.embed_dim block_in = config.base_channels * config.channel_multiplier[-1] self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() attn_norms = nn.ModuleList() block_out = config.base_channels * config.channel_multiplier[i_level] for i_block in range(self.num_res_blocks + 1): block.append( Emu3VQVAEResnetBlock( in_channels=block_in, out_channels=block_out, quant_channels=quant_channels, ) ) block_in = block_out if i_level in config.attn_resolutions: attn.append(Emu3VQVAEAttentionBlock(config)) attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in)) up = nn.Module() up.block = block up.attn = attn up.attn_norms = attn_norms if i_level != 0: up.upsample = Emu3VQVAEEncoderConvUpsample(block_in) self.up.insert(0, up) def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor): for i_level, blocks in enumerate(self.up[::-1]): for i_block in range(self.num_res_blocks + 1): hidden_states = blocks.block[i_block](hidden_states, quant_states) if len(blocks.attn) > 0: residual = hidden_states hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) hidden_states = blocks.attn[i_block](hidden_states)[0] hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = residual + hidden_states if i_level != len(self.up) - 1: hidden_states = blocks.upsample(hidden_states) return hidden_states class Emu3VQVAEEncoder(nn.Module): def __init__(self, config): super().__init__() base_channels = config.base_channels in_channels = config.in_channels double_latent = config.double_latent latent_channels = config.latent_channels channel_multiplier = config.channel_multiplier out_channels = 2 * latent_channels if double_latent else latent_channels block_in = base_channels * channel_multiplier[-1] self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1) self.down_block = Emu3VQVAEDownBlock(config) self.middle_block = Emu3VQVAEMiddleBlock(config, block_in) self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) self.conv_out = torch.nn.Conv2d( block_in, out_channels, kernel_size=3, stride=1, padding=1, ) temporal_down_blocks = int(math.log2(config.temporal_downsample_factor)) self.time_conv = nn.ModuleList() self.time_res_stack = nn.ModuleList() for i in range(temporal_down_blocks): conv = Emu3VQVAETemporalDownsample(out_channels, out_channels) self.time_conv.append(conv) for _ in range(config.num_res_blocks): time_res_conv = Emu3VQVAETemporalResnetBlock( in_channels=out_channels, out_channels=out_channels, ) self.time_res_stack.append(time_res_conv) def forward(self, pixel_values: torch.LongTensor): temporal_dim = pixel_values.shape[1] pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:]) # downsampling & middle hidden_states = self.conv_in(pixel_values) hidden_states = self.down_block(hidden_states) hidden_states = self.middle_block(hidden_states) # end hidden_states = self.norm_out(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv_out(hidden_states) hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:]) hidden_states = hidden_states.permute(0, 2, 1, 3, 4) # temporal convs for conv in self.time_conv: hidden_states = conv(hidden_states) hidden_states *= torch.sigmoid(hidden_states) for layer in self.time_res_stack: hidden_states = layer(hidden_states) hidden_states = hidden_states.permute(0, 2, 1, 3, 4) return hidden_states class Emu3VQVAEDecoder(nn.Module): def __init__(self, config: Emu3VQVAEConfig): super().__init__() quant_channels = config.embed_dim block_in = config.base_channels * config.channel_multiplier[-1] self.time_res_stack = nn.ModuleList() for _ in range(config.num_res_blocks): time_res_conv = Emu3VQVAETemporalResnetBlock( in_channels=config.latent_channels, out_channels=config.latent_channels ) self.time_res_stack.append(time_res_conv) temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor)) self.time_conv = nn.ModuleList() for i in range(temp_upsample_block_num): conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels) self.time_conv.append(conv) self.conv_in = nn.Conv2d( config.latent_channels, block_in, kernel_size=3, stride=1, padding=1, ) self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels) self.up_block = Emu3VQVAEUpBlock(config) block_in = config.base_channels * config.channel_multiplier[0] self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in) self.conv_out = nn.Conv2d( block_in, config.out_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0) hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) # temporal convs for layer in self.time_res_stack: hidden_quant_states = layer(hidden_quant_states) for layer in self.time_conv: hidden_quant_states = layer(hidden_quant_states) hidden_quant_states *= torch.sigmoid(hidden_quant_states) hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0) hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:]) quant_states = quant_states.reshape(-1, *quant_states.shape[2:]) hidden_states = self.conv_in(hidden_states) # middle & upsampling hidden_states = self.middle_block(hidden_states, quant_states) hidden_states = self.up_block(hidden_states, quant_states) hidden_states = self.norm_out(hidden_states, quant_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states @auto_docstring( custom_intro=""" The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens. This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from [ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://huggingface.co/papers/2203.13131). """ ) class Emu3VQVAE(PreTrainedModel): config: Emu3VQVAEConfig base_model_prefix = "emuvideovq" main_input_name = "pixel_values" _supports_sdpa = True _supports_flash_attn = True _supports_flex_attn = True _supports_attention_backend = True _no_split_modules = [ "Emu3VQVAETemporalResnetBlock", "Emu3VQVAEAttentionBlock", "Emu3VQVAEResnetBlock", "Emu3VQVAEVectorQuantizer", ] def _init_weights(self, module): if isinstance(module, (nn.Conv2d, nn.Conv3d)): nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") if module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(module.bias, -bound, bound) elif isinstance(module, nn.Linear): nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) if module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 nn.init.uniform_(module.bias, -bound, bound) elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): nn.init.constant_(module.weight, 1.0) nn.init.constant_(module.bias, 0.0) elif isinstance(module, nn.Embedding): module.weight.data.normal_() if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def __init__(self, config: Emu3VQVAEConfig): super().__init__(config) self.config = config self.encoder = Emu3VQVAEEncoder(config) self.decoder = Emu3VQVAEDecoder(config) self.quantize = Emu3VQVAEVectorQuantizer(config) self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1) self.quant_conv = Emu3VQVAEConv3d( config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1) ) self.post_quant_conv = Emu3VQVAEConv3d( config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1) ) self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1) self.eval() # Emu3's VQ model is frozen self.post_init() def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor): is_image = pixel_values.ndim == 4 if is_image: temporal = self.config.temporal_downsample_factor batch_size, channels, height, width = pixel_values.shape pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1) else: batch_size, temporal, channels, height, width = pixel_values.shape hidden_states = self.encoder(pixel_values) # b t c h w -> b c t h w hidden_states = hidden_states.permute(0, 2, 1, 3, 4) hidden_states = self.quant_conv(hidden_states) # b c t h w -> b t c h w hidden_states = hidden_states.permute(0, 2, 1, 3, 4) codes = self.quantize(hidden_states) image_tokens = codes.squeeze(1) if is_image else codes image_tokens = [ single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)] for single_image, size in zip(image_tokens, image_sizes) ] return image_tokens def decode(self, hidden_states: torch.Tensor): is_image = hidden_states.ndim == 3 if is_image: hidden_states = hidden_states.unsqueeze(1) batch_size, temporal, height, width = hidden_states.shape quant = self.quantize.embedding(hidden_states.flatten()) channels = quant.shape[-1] quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous() post_quant = self.post_quant_conv(quant) quant = quant.permute(0, 2, 1, 3, 4) post_quant = post_quant.permute(0, 2, 1, 3, 4) video = self.decoder(post_quant, quant) video = video.reshape( batch_size, temporal * self.config.temporal_downsample_factor, self.config.out_channels, height * self.spatial_scale_factor, width * self.spatial_scale_factor, ) return video[:, 0] if is_image else video class Emu3ImageVocabularyMapping: """ A class for mapping discrete image tokens from VQGAN to BPE tokens. """ def __init__(self, vocab_map): self.vocab_map = vocab_map self.eol_token_id = vocab_map.get("<|extra_200|>") self.image_token_id = vocab_map.get("") @cached_property def image_tokens(self): return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) @cached_property def image_tokens_str(self): return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) @cached_property def img2bpe(self): return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str} @cached_property def bpe2img(self): return {v: k for k, v in self.img2bpe.items()} @cached_property def bpe2img_mapping_tensor(self): mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int) for k, v in self.bpe2img.items(): mapping[k] = v return mapping @cached_property def img2bpe_mapping_tensor(self): mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int) for k, v in self.img2bpe.items(): mapping[k] = v return mapping def convert_img2bpe(self, img_batch: list[torch.Tensor]) -> torch.Tensor: device = img_batch.device eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")] img_tokens = torch.cat([img_tokens, eol_row], dim=-1) return img_tokens.to(device) def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor: device = img_batch.device img_batch = img_batch[..., :-1] # remove last row of EOL tokens img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")] return img_tokens.to(device) class Emu3PreTrainedModel(ChameleonPreTrainedModel, Emu3VQVAE): _no_split_modules = [ "Emu3DecoderLayer", ] _supports_flex_attn = True _supports_attention_backend = True class Emu3TextModel(LlamaModel, Emu3PreTrainedModel): _can_record_outputs = { "hidden_states": Emu3DecoderLayer, "attentions": Emu3Attention, } def __init__(self, config: Emu3Config): super().__init__(config) self.layers = nn.ModuleList( [Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) class Emu3ForCausalLM(LlamaForCausalLM, Emu3PreTrainedModel, GenerationMixin): config: Emu3TextConfig def __init__(self, config): super().__init__(config) self.model = Emu3TextModel(config) def forward(**super_kwargs): r""" Example: ```python >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration >>> import torch >>> import requests >>> from PIL import Image >>> model = Emu3ForCausalLM.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16) >>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf") >>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device) >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ```""" super().forward() class Emu3Model(Emu3PreTrainedModel): _checkpoint_conversion_mapping = {"text_model.model": "text_model"} def __init__(self, config): super().__init__(config) self.text_model = Emu3TextModel._from_config(config.text_config) self.vqmodel = Emu3VQVAE(config.vq_config) self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.text_model.get_input_embeddings() def set_input_embeddings(self, value): self.text_model.set_input_embeddings(value) def set_decoder(self, decoder): self.text_model = decoder def get_decoder(self): return self.text_model def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor): """ Tokenizes images into discrete tokens with VQGAN module. Converts obtained image tokens into BPE tokens and wraps with "boi" and "eoi" special tokens. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The tensors corresponding to the input images. image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): The sizes of the images in the batch, being (height, width) for each image. """ image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes) bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list] bpe_tokens = torch.cat(bpe_tokens_list) return bpe_tokens def get_image_features(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor): """ Tokenizes images into discrete tokens with VQGAN module and embeds them with text embeddings layer Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. """ image_tokens = self.get_image_tokens(pixel_values, image_sizes) split_sizes = [ (height // self.vqmodel.vision_spatial_factor) * (width // self.vqmodel.vision_spatial_factor + 1) for height, width in image_sizes ] image_features = self.get_input_embeddings()(image_tokens) image_features = torch.split(image_features, split_sizes) return image_features @torch.no_grad def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int): """ Decodes generated image tokens from language model to continuous pixel values with VQGAN module via upsampling. Args: image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`): The tensors corresponding to the input images. height (`int`): Height of the generated image before upsampling. width (`int`): Width of the generated image before upsampling. """ sequences = image_tokens[:, :-3].view(-1, height, width + 1) image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences) image = self.vqmodel.decode(image_tokens) return image @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, image_sizes: torch.Tensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, CausalLMOutputWithPast]: r""" image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses [`Emu3ImageProcessor`] for processing images). """ if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_embeds = self.get_image_features(pixel_values, image_sizes) image_embeds = torch.cat(image_embeds, dim=0) if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.vocabulary_mapping.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) special_image_mask = special_image_mask.all(-1) else: special_image_mask = input_ids == self.vocabulary_mapping.image_token_id special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_embeds) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.text_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) return outputs class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin): base_model_prefix = "" _tied_weights_keys = ["lm_head.weight"] _checkpoint_conversion_mapping = { "^text_model.model": "model.text_model", "^vqmodel": "model.vqmodel", "^text_model.lm_head": "lm_head", } def __init__(self, config): super().__init__(config) self.model = Emu3Model(config) self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) def get_output_embeddings(self) -> nn.Module: return self.lm_head def set_decoder(self, decoder): self.model.set_decoder(decoder) def get_decoder(self): return self.model.get_decoder() # Make modules available throught conditional class for BC @property def text_model(self): return self.model.text_model @property def vqmodel(self): return self.model.vqmodel @property def vocabulary_mapping(self): return self.model.vocabulary_mapping def decode_image_tokens(self, **kwargs): return self.model.decode_image_tokens(**kwargs) @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, image_sizes: torch.Tensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, CausalLMOutputWithPast]: r""" image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses [`Emu3ImageProcessor`] for processing images). labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration >>> import torch >>> import requests >>> from PIL import Image >>> model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16) >>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf") >>> conversation = [ ... { ... "role": "system", ... "content": [ ... {"type": "text", "text": "You are a helpful assistant."}, ... ], ... }, ... { ... "role": "user", ... "content": [ ... {"type": "image"}, ... {"type": "text", "text": "Please describe the image."}, ... ], ... }, ... ] >>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) >>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw) >>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16) >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ```""" outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function( logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, pixel_values=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, position_ids=position_ids, pixel_values=pixel_values, use_cache=use_cache, **kwargs, ) if cache_position[0] != 0: model_inputs["pixel_values"] = None return model_inputs __all__ = [ "Emu3ForConditionalGeneration", "Emu3ForCausalLM", "Emu3TextModel", "Emu3PreTrainedModel", "Emu3VQVAE", "Emu3Model", ]