# coding=utf-8 # Copyright 2025 MiniMaxAI and HuggingFace Inc. teams. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MiniMax model.""" from typing import Optional import torch import torch.nn.functional as F from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...configuration_utils import layer_type_validation from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import MoeModelOutputWithPast from ...processing_utils import Unpack from ...utils import TransformersKwargs, logging from ...utils.generic import OutputRecorder from ..mixtral.configuration_mixtral import MixtralConfig from ..mixtral.modeling_mixtral import ( MixtralAttention, MixtralDecoderLayer, MixtralForCausalLM, MixtralForQuestionAnswering, MixtralForSequenceClassification, MixtralForTokenClassification, MixtralModel, MixtralPreTrainedModel, MixtralRMSNorm, MixtralSparseMoeBlock, ) logger = logging.get_logger(__name__) class MiniMaxConfig(MixtralConfig): r""" This is the configuration class to store the configuration of a [`MiniMaxModel`]. It is used to instantiate an MiniMax model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MiniMax. [MiniMaxAI/MiniMax-Text-01-hf](https://huggingface.co/MiniMaxAI/MiniMax-Text-01-hf) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the MiniMax model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MiniMaxModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to `4096*32`): The maximum sequence length that this model might ever be used with. MiniMax's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 1000000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*): Sliding window attention window size. If not specified, will default to `4096`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. num_experts_per_tok (`int`, *optional*, defaults to 2): The number of experts to route per-token, can be also interpreted as the `top-k` routing parameter num_local_experts (`int`, *optional*, defaults to 8): Number of experts per Sparse MLP layer. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not the router logits should be returned by the model. Enabeling this will also allow the model to output the auxiliary loss. See [here]() for more details router_aux_loss_coef (`float`, *optional*, defaults to 0.001): The aux loss factor for the total loss. router_jitter_noise (`float`, *optional*, defaults to 0.0): Amount of noise to add to the router. layer_types (`list`, *optional*): Attention pattern for each layer. block_size (`int`, *optional*, defaults to 256): The length of each attention block, determining how queries, keys, and values are grouped and processed for intra- and inter-block attention. full_attn_alpha_factor (`float`, *optional*, defaults to 1): Weight for residual value in residual connection after normal attention. full_attn_beta_factor (`float`, *optional*, defaults to 1): Weight for hidden state value in residual connection after normal attention. linear_attn_alpha_factor (`float`, *optional*, defaults to 1): Weight for residual value in residual connection after lightning attention. linear_attn_beta_factor (`float`, *optional*, defaults to 1): Weight for hidden state value in residual connection after lightning attention. mlp_alpha_factor (`float`, *optional*, defaults to 1): Weight for residual value in residual connection after MLP. mlp_beta_factor (`float`, *optional*, defaults to 1): Weight for hidden state value in residual connection after MLP. ```python >>> from transformers import MiniMaxModel, MiniMaxConfig >>> # Initializing a MiniMax style configuration >>> configuration = MiniMaxConfig() >>> # Initializing a model from the MiniMax style configuration >>> model = MiniMaxModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" def __init__( self, layer_types=None, block_size=256, full_attn_alpha_factor=1, full_attn_beta_factor=1, linear_attn_alpha_factor=1, linear_attn_beta_factor=1, mlp_alpha_factor=1, mlp_beta_factor=1, **super_kwargs, ): super().__init__(**super_kwargs) self.layer_types = layer_types self.block_size = block_size self.full_attn_alpha_factor = full_attn_alpha_factor self.full_attn_beta_factor = full_attn_beta_factor self.linear_attn_alpha_factor = linear_attn_alpha_factor self.linear_attn_beta_factor = linear_attn_beta_factor self.mlp_alpha_factor = mlp_alpha_factor self.mlp_beta_factor = mlp_beta_factor if self.layer_types is None: self.layer_types = [ "full_attention" if bool((i + 1) % 2) else "linear_attention" for i in range(self.num_hidden_layers) ] layer_type_validation(self.layer_types) class MiniMaxRMSNorm(MixtralRMSNorm): pass class MiniMaxCache(DynamicCache): def __init__(self): super().__init__() self.linear_cache: list[torch.Tensor] = [] def set_linear_cache(self, layer_idx, linear_cache): # There may be skipped layers, fill them with empty lists for _ in range(len(self.linear_cache), layer_idx + 1): self.linear_cache.append([]) self.linear_cache[layer_idx] = linear_cache def get_linear_cache(self, layer_idx: int): if layer_idx < len(self): return self.linear_cache[layer_idx] return None def __len__(self): return max(super().__len__(), len(self.linear_cache)) def __getitem__(self, layer_idx: int): if layer_idx < len(self.linear_cache) and self.linear_cache[layer_idx] != []: return (self.linear_cache[layer_idx],) return super().__getitem__(layer_idx) def __iter__(self): for layer_idx in range(len(self)): yield self[layer_idx] def batch_repeat_interleave(self, repeats: int): for layer_idx in range(len(self)): if self.linear_cache[layer_idx] != []: self.linear_cache[layer_idx] = self.linear_cache[layer_idx].repeat_interleave(repeats, dim=0) else: self.layers[layer_idx].batch_repeat_interleave(repeats) def batch_select_indices(self, indices: torch.Tensor): for layer_idx in range(len(self)): if self.linear_cache[layer_idx] != []: self.linear_cache[layer_idx] = self.linear_cache[layer_idx][indices, ...] else: self.layers[layer_idx].batch_select_indices(indices) def crop(self, max_length: int): raise RuntimeError("MiniMaxCache doesnot support `crop` method") class MiniMaxLightningAttention(nn.Module): def __init__(self, config: MiniMaxConfig, layer_idx: int): super().__init__() self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads self.num_attention_heads = config.num_attention_heads self.num_hidden_layers = config.num_hidden_layers self.block_size = config.block_size self.act_fn = ACT2FN[config.hidden_act] self.norm = MiniMaxRMSNorm(self.head_dim * self.num_attention_heads) self.qkv_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim * 3, bias=False) self.out_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False) self.output_gate = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False) slope_rate = self.get_slope_rate() query_decay, key_decay, diagonal_decay = self.decay_factors(slope_rate) self.register_buffer("slope_rate", slope_rate) self.register_buffer("query_decay", query_decay) self.register_buffer("key_decay", key_decay) self.register_buffer("diagonal_decay", diagonal_decay) def get_slope_rate(self): base = 1 / (2 ** (8 / self.num_attention_heads)) exponent = torch.arange(self.num_attention_heads) + 1 factor = 1 - self.layer_idx / (self.num_hidden_layers - 1 + 1e-5) + 1e-5 rate = base**exponent rate = rate * factor rate = rate[:, None, None] return rate def decay_factors(self, slope_rate): block_size_range = torch.arange(self.block_size) + 1 query_decay = torch.exp(-slope_rate * block_size_range[:, None]) key_decay = torch.exp(-slope_rate * (self.block_size - block_size_range[:, None])) diagonal_decay = block_size_range[:, None] - block_size_range[None, :] diagonal_decay = diagonal_decay[None, None, :, :] diagonal_decay = slope_rate * diagonal_decay diagonal_decay = torch.where(diagonal_decay >= 0, -diagonal_decay, float("-inf")) diagonal_decay = torch.exp(diagonal_decay) return query_decay, key_decay, diagonal_decay def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: batch_size, seq_len, hidden_size = hidden_states.shape num_blocks = (seq_len + self.block_size - 1) // self.block_size qkv_states = self.act_fn(self.qkv_proj(hidden_states)) qkv_states = qkv_states.reshape(batch_size, seq_len, self.num_attention_heads, 3 * self.head_dim) query_states, key_states, value_states = torch.split(qkv_states, self.head_dim, dim=3) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) # calculated (K.T @ V) and saved as cache attn_weights_inter = None if past_key_value is not None: attn_weights_inter = past_key_value.get_linear_cache(self.layer_idx) if attn_weights_inter is None: attn_weights_inter = torch.zeros(batch_size, self.num_attention_heads, self.head_dim, self.head_dim).to( value_states ) # apply attention_mask if attention_mask is not None: attention_mask = attention_mask.to(dtype=torch.bool) # Ensure it's a boolean tensor value_states = value_states.masked_fill(~attention_mask.unsqueeze(1).unsqueeze(-1), 0) attn_output = [] for i in range(num_blocks): start_idx = i * self.block_size end_idx = min(start_idx + self.block_size, seq_len) current_block_size = end_idx - start_idx current_query_states = query_states[:, :, start_idx:end_idx] current_key_states = key_states[:, :, start_idx:end_idx] current_value_states = value_states[:, :, start_idx:end_idx] current_query_decay = self.query_decay[:, :current_block_size] current_key_decay = self.key_decay[:, -current_block_size:] current_diagonal_decay = self.diagonal_decay[:, :, :current_block_size, :current_block_size] block_decay = torch.exp(-self.slope_rate * current_block_size) # intra: ( Q @ K.T ) @ V -> QK * V attn_weights_intra = torch.matmul(current_query_states, current_key_states.transpose(-1, -2)) attn_output_intra = torch.matmul(attn_weights_intra * current_diagonal_decay, current_value_states) # inter: Q @ ( K.T @ V ) -> Q * KV attn_output_inter = torch.matmul(current_query_states * current_query_decay, attn_weights_inter) # final attention output current_attn_output = attn_output_inter + attn_output_intra attn_output.append(current_attn_output) # cacluate attn_weights_inter for next block or cache next_attn_weights_inter = torch.matmul( (current_key_states * current_key_decay).transpose(-1, -2), current_value_states ) attn_weights_inter = attn_weights_inter * block_decay + next_attn_weights_inter else: ratio = torch.exp(-self.slope_rate) attn_output = [] for i in range(seq_len): current_query_states = query_states[:, :, i : i + 1] current_key_states = key_states[:, :, i : i + 1] current_value_states = value_states[:, :, i : i + 1] current_attn_weights_inter = torch.matmul(current_key_states.transpose(-1, -2), current_value_states) attn_weights_inter = ratio * attn_weights_inter + current_attn_weights_inter current_attn_output = torch.matmul(current_query_states, attn_weights_inter) attn_output.append(current_attn_output) # concatenate attention outputs over all blocks attn_output = torch.cat(attn_output, dim=-2) # final output projection attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, seq_len, self.num_attention_heads * self.head_dim) attn_output = self.norm(attn_output) attn_output = F.sigmoid(self.output_gate(hidden_states)) * attn_output attn_output = self.out_proj(attn_output) # update cache if past_key_value is not None: past_key_value.set_linear_cache(self.layer_idx, attn_weights_inter) return attn_output, attn_weights_inter class MiniMaxAttention(MixtralAttention): pass class MiniMaxSparseMoeBlock(MixtralSparseMoeBlock): pass class MiniMaxDecoderLayer(MixtralDecoderLayer, GradientCheckpointingLayer): def __init__(self, config: MiniMaxConfig, layer_idx: int): super().__init__(config, layer_idx) self.layer_idx = layer_idx self.layer_type = config.layer_types[layer_idx] self.mlp_alpha_factor = config.mlp_alpha_factor self.mlp_beta_factor = config.mlp_beta_factor if self.layer_type == "linear_attention": self.self_attn = MiniMaxLightningAttention(config, layer_idx) self.attn_alpha_factor = config.linear_attn_alpha_factor self.attn_beta_factor = config.linear_attn_beta_factor else: self.self_attn = MiniMaxAttention(config, layer_idx) self.attn_alpha_factor = config.full_attn_alpha_factor self.attn_beta_factor = config.full_attn_beta_factor def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. attention_mask (`torch.Tensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ hidden_states = self.input_layernorm(hidden_states) residual = hidden_states # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual * self.attn_alpha_factor + hidden_states * self.attn_beta_factor # Fully Connected hidden_states = self.post_attention_layernorm(hidden_states) residual = hidden_states hidden_states, _ = self.block_sparse_moe(hidden_states) hidden_states = residual * self.mlp_alpha_factor + hidden_states * self.mlp_beta_factor return hidden_states class MiniMaxPreTrainedModel(MixtralPreTrainedModel): _can_compile_fullgraph = False _can_record_outputs = { "router_logits": OutputRecorder(MiniMaxSparseMoeBlock, index=1), "hidden_states": MiniMaxDecoderLayer, "attentions": [MiniMaxAttention, MiniMaxLightningAttention], } class MiniMaxModel(MixtralModel): def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[MiniMaxCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> MoeModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if use_cache and past_key_values is None: past_key_values = MiniMaxCache() elif use_cache and not isinstance(past_key_values, MiniMaxCache): raise ValueError( f"MiniMax uses cache of its own and is not compatible with `past_key_values` of type {type(past_key_values)}." ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask causal_mask = mask_function( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers: if decoder_layer.layer_type == "full_attention": input_attention_mask = causal_mask else: # lightning attention uses original attention_mask, and uses it only for the first step input_attention_mask = attention_mask hidden_states = decoder_layer( hidden_states, position_embeddings=position_embeddings, attention_mask=input_attention_mask, position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.norm(hidden_states) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) class MiniMaxForCausalLM(MixtralForCausalLM): def forward(self, **super_kwargs): r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, MiniMaxForCausalLM >>> model = MiniMaxForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf") >>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" return super().forward(**super_kwargs) class MiniMaxForSequenceClassification(MixtralForSequenceClassification): pass class MiniMaxForTokenClassification(MixtralForTokenClassification): pass class MiniMaxForQuestionAnswering(MixtralForQuestionAnswering): pass __all__ = [ "MiniMaxConfig", "MiniMaxPreTrainedModel", "MiniMaxModel", "MiniMaxForCausalLM", "MiniMaxForSequenceClassification", "MiniMaxForTokenClassification", "MiniMaxForQuestionAnswering", ]