# coding=utf-8 # Copyright 2024 the Fast authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TextNet model configuration""" from transformers import PretrainedConfig from transformers.utils import logging from transformers.utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) class TextNetConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TextNextModel`]. It is used to instantiate a TextNext model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [czczup/textnet-base](https://huggingface.co/czczup/textnet-base). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.Read the documentation from [`PretrainedConfig`] for more information. Args: stem_kernel_size (`int`, *optional*, defaults to 3): The kernel size for the initial convolution layer. stem_stride (`int`, *optional*, defaults to 2): The stride for the initial convolution layer. stem_num_channels (`int`, *optional*, defaults to 3): The num of channels in input for the initial convolution layer. stem_out_channels (`int`, *optional*, defaults to 64): The num of channels in out for the initial convolution layer. stem_act_func (`str`, *optional*, defaults to `"relu"`): The activation function for the initial convolution layer. image_size (`tuple[int, int]`, *optional*, defaults to `[640, 640]`): The size (resolution) of each image. conv_layer_kernel_sizes (`list[list[list[int]]]`, *optional*): A list of stage-wise kernel sizes. If `None`, defaults to: `[[[3, 3], [3, 3], [3, 3]], [[3, 3], [1, 3], [3, 3], [3, 1]], [[3, 3], [3, 3], [3, 1], [1, 3]], [[3, 3], [3, 1], [1, 3], [3, 3]]]`. conv_layer_strides (`list[list[int]]`, *optional*): A list of stage-wise strides. If `None`, defaults to: `[[1, 2, 1], [2, 1, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1]]`. hidden_sizes (`list[int]`, *optional*, defaults to `[64, 64, 128, 256, 512]`): Dimensionality (hidden size) at each stage. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. out_features (`list[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. out_indices (`list[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Examples: ```python >>> from transformers import TextNetConfig, TextNetBackbone >>> # Initializing a TextNetConfig >>> configuration = TextNetConfig() >>> # Initializing a model (with random weights) >>> model = TextNetBackbone(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "textnet" def __init__( self, stem_kernel_size=3, stem_stride=2, stem_num_channels=3, stem_out_channels=64, stem_act_func="relu", image_size=[640, 640], conv_layer_kernel_sizes=None, conv_layer_strides=None, hidden_sizes=[64, 64, 128, 256, 512], batch_norm_eps=1e-5, initializer_range=0.02, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) if conv_layer_kernel_sizes is None: conv_layer_kernel_sizes = [ [[3, 3], [3, 3], [3, 3]], [[3, 3], [1, 3], [3, 3], [3, 1]], [[3, 3], [3, 3], [3, 1], [1, 3]], [[3, 3], [3, 1], [1, 3], [3, 3]], ] if conv_layer_strides is None: conv_layer_strides = [[1, 2, 1], [2, 1, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1]] self.stem_kernel_size = stem_kernel_size self.stem_stride = stem_stride self.stem_num_channels = stem_num_channels self.stem_out_channels = stem_out_channels self.stem_act_func = stem_act_func self.image_size = image_size self.conv_layer_kernel_sizes = conv_layer_kernel_sizes self.conv_layer_strides = conv_layer_strides self.initializer_range = initializer_range self.hidden_sizes = hidden_sizes self.batch_norm_eps = batch_norm_eps self.depths = [len(layer) for layer in self.conv_layer_kernel_sizes] self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, 5)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) __all__ = ["TextNetConfig"]