# coding=utf-8 # Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any from ..file_utils import is_torch_available from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch from ..utils import is_accelerate_available, is_quark_available, logging if is_accelerate_available(): from accelerate.utils import set_module_tensor_to_device logger = logging.get_logger(__name__) CHECKPOINT_KEYS = { "weight_scale": "weight_quantizer.scale", "bias_scale": "bias_quantizer.scale", "input_scale": "input_quantizer.scale", "output_scale": "output_quantizer.scale", "weight_zero_point": "weight_quantizer.zero_point", "bias_zero_point": "bias_quantizer.zero_point", "input_zero_point": "input_quantizer.zero_point", "output_zero_point": "output_quantizer.zero_point", } class QuarkHfQuantizer(HfQuantizer): """ Quark quantizer (https://quark.docs.amd.com/latest/). """ requires_calibration = True # On-the-fly quantization with quark is not supported for now. required_packages = ["quark"] # Checkpoints are expected to be already quantized when loading a quark model. However, as some keys from # the checkpoint might mismatch the model parameters keys, we use the `create_quantized_param` method # to load the checkpoints, remapping the keys. requires_parameters_quantization = True def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.json_export_config = quantization_config.json_export_config def validate_environment(self, *args, **kwargs): if not is_quark_available(): raise ImportError( "Loading a Quark quantized model requires the `quark` library but it was not found in the environment. Please refer to https://quark.docs.amd.com/latest/install.html." ) def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): from quark.torch.export.api import _map_to_quark _map_to_quark( model, self.quantization_config.quant_config, pack_method=self.json_export_config.pack_method, custom_mode=self.quantization_config.custom_mode, ) return model def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: dict[str, Any], **kwargs, ) -> bool: return True def create_quantized_param( self, model, param, param_name, param_device, state_dict, unexpected_keys ) -> "torch.nn.Parameter": postfix = param_name.split(".")[-1] if postfix in CHECKPOINT_KEYS: param_name = param_name.replace(postfix, CHECKPOINT_KEYS[postfix]) set_module_tensor_to_device(model, param_name, param_device, value=param) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def is_serializable(self, safe_serialization=None): return False @property def is_trainable(self): return False