# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, is_vptq_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class VptqHfQuantizer(HfQuantizer): """ Quantizer of the VPTQ method. Enables the loading of prequantized models. """ requires_calibration = True required_packages = ["vptq"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Using `vptq` quantization requires Accelerate: `pip install accelerate`") if not is_vptq_available(): raise ImportError("Using `vptq` quantization requires VPTQ>=0.0.4: `pip install -U vptq`") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: if torch.cuda.is_available(): torch_dtype = torch.float16 logger.info( "CUDA available. Assuming VPTQ inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." ) else: import vptq device_availability = getattr(vptq, "device_availability", lambda device: False) if device_availability("cpu") is True: raise RuntimeError("No GPU found. Please wait for the next release of VPTQ to use CPU inference") torch_dtype = torch.float32 logger.info("No GPU found. Assuming VPTQ inference on CPU and loading the model in `torch.float32`.") return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[list[str]] = None, **kwargs, ): """ we don't have param like modules_to_not_convert to indicate which layers should not be quantized because `quantization_config` include the layers that should be quantized """ from ..integrations import replace_with_vptq_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) replace_with_vptq_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self) -> bool: return False def is_serializable(self, safe_serialization=None): return True