# coding=utf-8 # Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch DBRX model.""" import math from typing import Any, Optional, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import auto_docstring, is_torch_flex_attn_available, logging from .configuration_dbrx import DbrxConfig if is_torch_flex_attn_available(): from torch.nn.attention.flex_attention import BlockMask from ...integrations.flex_attention import make_flex_block_causal_mask if is_flash_attn_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) class DbrxRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) @torch.no_grad() def forward(self, x, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] self.inv_freq.to(x.device) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def load_balancing_loss_func( gate_probabilities: torch.Tensor, num_experts: int, top_k: int, attention_mask: Optional[torch.Tensor], ) -> torch.Tensor: r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: gate_logits (Union[`torch.Tensor`, tuple[torch.Tensor]): Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts]. num_experts (`int`): Number of experts. top_k (`int`): The number of experts each token is routed to. attention_mask (`torch.Tensor`, *optional*): The attention_mask used in forward function shape [batch_size X sequence_length] if not None. Returns: The auxiliary loss. """ if gate_probabilities is None or not isinstance(gate_probabilities, tuple): return torch.tensor(0.0) if isinstance(gate_probabilities, tuple): compute_device = gate_probabilities[0].device routing_weights = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_probabilities], dim=0) _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) if attention_mask is None: # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) else: batch_size, sequence_length = attention_mask.shape num_hidden_layers = routing_weights.shape[0] // (batch_size * sequence_length) # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask expert_attention_mask = ( attention_mask[None, :, :, None, None] .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) .reshape(-1, top_k, num_experts) .to(compute_device) ) # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( expert_attention_mask, dim=0 ) # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert router_per_expert_attention_mask = ( attention_mask[None, :, :, None] .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) .reshape(-1, num_experts) .to(compute_device) ) # Compute the average probability of routing to these experts router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( router_per_expert_attention_mask, dim=0 ) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts class DbrxAttention(nn.Module): """Multi-head self attention.""" def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None): super().__init__() self.config = config self.hidden_size = config.d_model self.num_heads = config.n_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.max_seq_len self.block_idx = block_idx if block_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will " + "lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` " + "when creating this class." ) attn_config = config.attn_config self.attn_pdrop = attn_config.attn_pdrop self.clip_qkv = attn_config.clip_qkv self.num_key_value_heads = attn_config.kv_n_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.rope_theta = attn_config.rope_theta self.is_causal = True self.Wqkv = nn.Linear( self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=False ) self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.rotary_emb = DbrxRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) def forward( self, hidden_states: torch.Tensor, position_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Any, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: bsz, q_len, _ = hidden_states.size() qkv_states = self.Wqkv(hidden_states) min_val = -self.clip_qkv if self.clip_qkv is not None else None max_val = self.clip_qkv qkv_states = qkv_states.clamp(min=min_val, max=max_val) query_states, key_states, value_states = qkv_states.split( [ self.hidden_size, self.num_key_value_heads * self.head_dim, self.num_key_value_heads * self.head_dim, ], dim=2, ) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attn_pdrop, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class DbrxFlashAttention2(DbrxAttention): """Dbrx flash attention module. This module inherits from `DbrxAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it calls the public API of flash attention. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Any, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: if isinstance(past_key_value, StaticCache): raise ValueError( "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" ) logger.info("Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.") output_attentions = False bsz, q_len, _ = hidden_states.size() qkv_states = self.Wqkv(hidden_states) if self.clip_qkv is not None: qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv) query_states, key_states, value_states = qkv_states.split( [ self.hidden_size, self.num_key_value_heads * self.head_dim, self.num_key_value_heads * self.head_dim, ], dim=2, ) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attn_pdrop if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype device_type = query_states.device.type if query_states.device.type != "mps" else "cpu" if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = ( torch.get_autocast_dtype(device_type) if hasattr(torch, "get_autocast_dtype") else torch.get_autocast_gpu_dtype() ) # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = query_states.dtype logger.warning_once( "The input hidden states seems to be silently casted in float32, this might be " + "related to the fact you have upcasted embedding or layer norm layers in " + f"float32. We will cast back the input in {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class DbrxSdpaAttention(DbrxAttention): """ Dbrx attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `DbrxAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "DbrxModel is using DbrxSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) bsz, q_len, _ = hidden_states.size() qkv_states = self.Wqkv(hidden_states) if self.clip_qkv is not None: qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv) query_states, key_states, value_states = qkv_states.split( [ self.hidden_size, self.num_key_value_heads * self.head_dim, self.num_key_value_heads * self.head_dim, ], dim=2, ) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attn_pdrop if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.out_proj(attn_output) return attn_output, None DBRX_ATTENTION_CLASSES = { "eager": DbrxAttention, "flash_attention_2": DbrxFlashAttention2, "sdpa": DbrxSdpaAttention, } class DbrxNormAttentionNorm(nn.Module): def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None): super().__init__() self.block_idx = block_idx self.resid_pdrop = config.resid_pdrop self.norm_1 = nn.LayerNorm(config.d_model, bias=False) self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation]( config=config, block_idx=block_idx, ) self.norm_2 = nn.LayerNorm(config.d_model, bias=False) def forward( self, hidden_states: torch.Tensor, position_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Any, ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: residual_states = hidden_states hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype) hidden_states, attn_weights = self.attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training) hidden_states = hidden_states + residual_states residual_states = hidden_states hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype) return residual_states, hidden_states, attn_weights class DbrxRouter(nn.Module): def __init__( self, hidden_size: int, moe_num_experts: int, moe_top_k: int, moe_jitter_eps: Optional[float], moe_normalize_expert_weights: Optional[float], ): super().__init__() self.hidden_size = hidden_size self.moe_num_experts = moe_num_experts self.moe_top_k = moe_top_k self.moe_jitter_eps = moe_jitter_eps self.moe_normalize_expert_weights = moe_normalize_expert_weights self.layer = nn.Linear(self.hidden_size, self.moe_num_experts, bias=False) def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.LongTensor]: if self.training and self.moe_jitter_eps is not None: hidden_states *= torch.empty_like(hidden_states).uniform_( 1.0 - self.moe_jitter_eps, 1.0 + self.moe_jitter_eps ) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) weights = self.layer(hidden_states).softmax(dim=-1, dtype=torch.float32) top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1) top_weights_scale = ( torch.norm(top_weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True) if self.moe_normalize_expert_weights is not None else 1.0 ) top_weights = top_weights / top_weights_scale weights = weights.to(hidden_states.dtype) top_weights = top_weights.to(hidden_states.dtype) return weights, top_weights, top_experts class DbrxExpertGLU(nn.Module): def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict): super().__init__() self.hidden_size = hidden_size self.ffn_hidden_size = ffn_hidden_size self.moe_num_experts = moe_num_experts self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) self.v1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) self.w2 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) act_fn_name = ffn_act_fn.get("name", "silu") self.activation_fn = ACT2FN[act_fn_name] def forward( self, x: torch.Tensor, expert_w1: torch.Tensor, expert_v1: torch.Tensor, expert_w2: torch.Tensor ) -> torch.Tensor: gate_proj = x.matmul(expert_w1.t()) up_proj = x.matmul(expert_v1.t()) gate_proj = self.activation_fn(gate_proj) intermediate_states = gate_proj * up_proj down_proj = intermediate_states.matmul(expert_w2) return down_proj class DbrxExperts(nn.Module): def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict): super().__init__() self.moe_num_experts = moe_num_experts self.mlp = DbrxExpertGLU( hidden_size=hidden_size, ffn_hidden_size=ffn_hidden_size, moe_num_experts=moe_num_experts, ffn_act_fn=ffn_act_fn, ) def forward( self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor ) -> torch.Tensor: bsz, q_len, hidden_size = x.shape x = x.view(-1, hidden_size) out = torch.zeros_like(x) expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0) # Chunk experts at once to avoid storing full parameter multiple times in autograd w1_chunked = self.mlp.w1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk( self.moe_num_experts, dim=0 ) v1_chunked = self.mlp.v1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk( self.moe_num_experts, dim=0 ) w2_chunked = self.mlp.w2.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk( self.moe_num_experts, dim=0 ) w1_chunked = [w1.squeeze(dim=0) for w1 in w1_chunked] v1_chunked = [v1.squeeze(dim=0) for v1 in v1_chunked] w2_chunked = [w2.squeeze(dim=0) for w2 in w2_chunked] for expert_idx in range(0, self.moe_num_experts): # (This cause torch.compile to fail with `torch._dynamo.exc.Unsupported: dynamic shape operator: aten.nonzero.default`) # (set torch._dynamo.config.capture_dynamic_output_shape_ops = True may help but not tested) topk_idx, token_idx = torch.where(expert_mask[expert_idx]) if token_idx.shape[0] == 0: continue token_list = token_idx topk_list = topk_idx expert_tokens = x[None, token_list].reshape(-1, hidden_size) expert_out = ( self.mlp(expert_tokens, w1_chunked[expert_idx], v1_chunked[expert_idx], w2_chunked[expert_idx]) * top_weights[token_list, topk_list, None] ) out.index_add_(0, token_idx, expert_out) out = out.reshape(bsz, q_len, hidden_size) return out class DbrxFFN(nn.Module): def __init__(self, config: DbrxConfig): super().__init__() ffn_config = config.ffn_config self.router = DbrxRouter( hidden_size=config.d_model, moe_num_experts=ffn_config.moe_num_experts, moe_top_k=ffn_config.moe_top_k, moe_jitter_eps=ffn_config.moe_jitter_eps, moe_normalize_expert_weights=ffn_config.moe_normalize_expert_weights, ) self.experts = DbrxExperts( hidden_size=config.d_model, ffn_hidden_size=ffn_config.ffn_hidden_size, moe_num_experts=ffn_config.moe_num_experts, ffn_act_fn=ffn_config.ffn_act_fn, ) def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: weights, top_weights, top_experts = self.router(x) out = self.experts(x, weights, top_weights, top_experts) return out, weights class DbrxBlock(GradientCheckpointingLayer): def __init__(self, config: DbrxConfig, block_idx: int): super().__init__() self.hidden_size = config.d_model self.resid_pdrop = config.resid_pdrop self.block_idx = block_idx self.norm_attn_norm = DbrxNormAttentionNorm( config=config, block_idx=block_idx, ) self.ffn = DbrxFFN(config=config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Any, ) -> Union[ tuple[torch.Tensor], tuple[torch.Tensor, Optional[torch.Tensor]], tuple[torch.Tensor, Optional[Cache]], tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]], tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]], tuple[torch.Tensor, Optional[Cache], Optional[torch.Tensor]], tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor]], ]: """Forward function for DbrxBlock. Args: hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)` attention_mask (`torch.Tensor`, *optional*): attention mask of size (batch_size, sequence_length) if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length) if default attention is used. past_key_value (`Tuple(torch.Tensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the router logits. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor`, *optional*): position ids of the cache """ # Norm + Attention + Norm resid_states, hidden_states, self_attn_weights = self.norm_attn_norm( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) # Fully Connected hidden_states, router_logits = self.ffn(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training) hidden_states = resid_states + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if output_router_logits: outputs += (router_logits,) return outputs @auto_docstring class DbrxPreTrainedModel(PreTrainedModel): config: DbrxConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["DbrxBlock"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) def _init_weights(self, module: nn.Module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, DbrxExpertGLU): module.w1.data.normal_(mean=0.0, std=std) module.v1.data.normal_(mean=0.0, std=std) module.w2.data.normal_(mean=0.0, std=std) @auto_docstring class DbrxModel(DbrxPreTrainedModel): """Transformer decoder consisting of *config.num_hidden_layers*. Each layer is a [`DbrxBlock`] layer. Args: config ([`DbrxConfig`]): Model configuration class with all parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def __init__(self, config: DbrxConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.emb_pdrop = config.emb_pdrop self.wte = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) self.norm_f = nn.LayerNorm(config.d_model, bias=False) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.wte def set_input_embeddings(self, value: nn.Embedding): self.wte = value @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, # NOOP kwargs, for now ) -> Union[tuple, MoeModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.wte(input_ids) inputs_embeds = nn.functional.dropout(inputs_embeds, p=self.emb_pdrop, training=self.training) # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None for block in self.blocks: if output_hidden_states: all_hidden_states += (hidden_states,) block_outputs = block( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, ) hidden_states = block_outputs[0] if output_attentions: all_self_attns += (block_outputs[1],) if output_router_logits: all_router_logits += (block_outputs[-1],) hidden_states = self.norm_f(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns, all_router_logits] if v is not None ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) # Copied from transformers.models.gptj.modeling_gptj.GPTJModel._update_causal_mask def _update_causal_mask( self, attention_mask: Union[torch.Tensor, "BlockMask"], input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) return attention_mask # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype = input_tensor.dtype sequence_length = input_tensor.shape[1] if using_compilable_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.gptj.modeling_gptj.GPTJModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask @auto_docstring( custom_intro=""" The DBRX Model transformer for causal language modeling. """ ) class DbrxForCausalLM(DbrxPreTrainedModel, GenerationMixin): def __init__(self, config: DbrxConfig): super().__init__(config) self.transformer = DbrxModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.moe_loss_weight = config.ffn_config.moe_loss_weight self.num_experts = config.ffn_config.moe_num_experts self.num_experts_per_tok = config.ffn_config.moe_top_k # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.transformer.get_input_embeddings() def set_input_embeddings(self, value: nn.Embedding): self.transformer.set_input_embeddings(value) def get_output_embeddings(self) -> nn.Linear: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Linear): self.lm_head = new_embeddings def set_decoder(self, decoder: DbrxModel): self.transformer = decoder def get_decoder(self) -> DbrxModel: return self.transformer @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> Union[tuple, MoeCausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >> from transformers import AutoTokenizer, DbrxForCausalLM >> model = DbrxForCausalLM.from_pretrained("databricks/dbrx-instruct") >> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct") >> prompt = "Hey, are you conscious? Can you talk to me?" >> inputs = tokenizer(prompt, return_tensors="pt") >> # Generate >> generate_ids = model.generate(inputs.input_ids, max_length=30) >> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] # No upscaling to float was ever done for Dbrx slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function( logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None and loss is not None: loss += self.moe_loss_weight * aux_loss.to(loss.device) # make sure to reside in the same device if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) __all__ = ["DbrxForCausalLM", "DbrxModel", "DbrxPreTrainedModel"]