# coding=utf-8 # Copyright 2025 The BitNet Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """PyTorch BitNet model.""" from typing import Callable, Optional import torch from ...cache_utils import Cache from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import CausalLMOutputWithPast from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import logging from ..gemma.modeling_gemma import GemmaMLP from ..llama.modeling_llama import ( LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, LlamaRMSNorm, apply_rotary_pos_emb, eager_attention_forward, ) from .configuration_bitnet import BitNetConfig logger = logging.get_logger(__name__) class BitNetRMSNorm(LlamaRMSNorm): pass class BitNetMLP(GemmaMLP): def __init__(self, config: BitNetConfig): super().__init__(config) self.ffn_sub_norm = BitNetRMSNorm(config.intermediate_size, eps=config.rms_norm_eps) def forward(self, x): down_proj = self.down_proj(self.ffn_sub_norm(self.act_fn(self.gate_proj(x)) * self.up_proj(x))) return down_proj class BitNetAttention(LlamaAttention): def __init__(self, config: BitNetConfig, layer_idx: int): super().__init__(config, layer_idx) self.attn_sub_norm = BitNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.attn_sub_norm(attn_output) # diff with Llama attn_output = self.o_proj(attn_output) return attn_output, attn_weights class BitNetDecoderLayer(LlamaDecoderLayer): pass class BitNetModel(LlamaModel): pass class BitNetForCausalLM(LlamaForCausalLM): _tied_weights_keys = ["lm_head.weight"] _tp_plan = None _pp_plan = None def forward( self, **super_kwargs, ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, BitNetForCausalLM >>> model = BitNetForCausalLM.from_pretrained("microsoft/bitnet-b1.58-2B-4T") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/bitnet-b1.58-2B-4T") >>> prompt = f'<|begin_of_text|>User: Hey, are you conscious? Can you talk to me?<|eot_id|>Assistant: ' >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=100) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "User: Hey, are you conscious? Can you talk to me?Assistant: No, I'm not conscious. I'm an artificial intelligence designed to assist with information and tasks. How can I help you today?" ```""" return super().forward(**super_kwargs) __all__ = [ "BitNetForCausalLM", "BitNetModel", "BitNetPreTrainedModel", # noqa: F822 ]