# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation class Emu3VQVAEConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Emu3VQVAE`]. It is used to instantiate an VQ-VAE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a configuration to the VQ model presented in Emu3 paper. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: codebook_size (`int`, *optional*, defaults to 32768): Codebook size of the VQ model. embed_dim (`int`, *optional*, defaults to 4): Dimension of the quantized vector in codebook. latent_channels (`int`, *optional*, defaults to 4): Dimension of the output channel of encoder and the input channel of decoder double_latent (`bool`, *optional*, defaults to `False`): Whether double the output dim of the encoder. in_channels (`int`, *optional*, defaults to 3): Input channel of encoder. out_channels (`int`, *optional*, defaults to 3): Output channel of decoder. temporal_downsample_factor (`int`, *optional*, defaults to 4): Temporal downsample factor. base_channels (`int`, *optional*, defaults to 256): Basic channel number of the intermediate blocks. channel_multiplier (`list[int]`, *optional*, defaults to `[1, 2, 2, 4]`): Channel scaling factor of the intermediate blocks. num_res_blocks (`int`, *optional*, defaults to 2): Residual block number in each stage. attn_resolutions (`list[int]`, *optional*, defaults to `[3]`): Stage indices to apply attention. hidden_size (`int`, *optional*, defaults to 1024): Dimension of the hidden representations in the attention layer. num_attention_heads (`int`, *optional*, defaults to 1): Number of attention heads for each attention layer. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import Emu3VQVAE, Emu3VQVAEConfig >>> # Initializing a video VQ model of Emu3 configuration >>> configuration = Emu3VQVAEConfig() >>> # Initializing a model from the Emu3 VQ model style configuration >>> model = Emu3VQVAE(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "emu3_vqgan" base_config_key = "vq_config" def __init__( self, codebook_size: int = 32768, embed_dim: int = 4, latent_channels: int = 4, double_latent: bool = False, in_channels: int = 3, out_channels: int = 3, temporal_downsample_factor: int = 4, base_channels: int = 256, channel_multiplier: list[int] = [1, 2, 2, 4], num_res_blocks: int = 2, attn_resolutions: list[int] = [3], hidden_size: int = 1024, num_attention_heads: int = 1, attention_dropout: float = 0.0, **kwargs, ): super().__init__(**kwargs) self.codebook_size = codebook_size self.embed_dim = embed_dim self.latent_channels = latent_channels self.double_latent = double_latent self.in_channels = in_channels self.out_channels = out_channels self.temporal_downsample_factor = temporal_downsample_factor self.base_channels = base_channels self.channel_multiplier = channel_multiplier self.num_res_blocks = num_res_blocks self.attn_resolutions = attn_resolutions self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.attention_dropout = attention_dropout class Emu3TextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Emu3TextModel`]. It is used to instantiate a emu3 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 184622): Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Emu3Model`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 9216): The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens, rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 151643): Padding token id. bos_token_id (`int`, *optional*, defaults to 151849): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 151850): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 1000000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`list[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`list[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. ```python >>> from transformers import Emu3Model, Emu3Config >>> # Initializing a Emu3-community/Emu3-Chat-hf style configuration >>> configuration = Emu3Config() >>> # Initializing a model from the Emu3-community/Emu3-Chat-hf style configuration >>> model = Emu3Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "emu3_text_model" base_config_key = "text_config" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size: int = 184622, hidden_size: int = 4096, intermediate_size: int = 14336, num_hidden_layers: int = 32, num_attention_heads: int = 32, num_key_value_heads: Optional[int] = 8, hidden_act: str = "silu", max_position_embeddings: int = 9216, rms_norm_eps: float = 1e-5, use_cache: bool = True, pad_token_id: int = 151643, bos_token_id: int = 151849, eos_token_id: int = 151850, tie_word_embeddings: bool = False, rope_theta: float = 1000000.0, rope_scaling: Optional = None, mlp_bias=False, attention_bias=False, attention_dropout: float = 0.1, initializer_range: float = 0.02, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.mlp_bias = mlp_bias self.attention_bias = attention_bias self.initializer_range = initializer_range rope_config_validation(self) self.attention_dropout = attention_dropout super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) class Emu3Config(PretrainedConfig): """ This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate a emu3 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vq_config (`Union[Dict, Emu3VQVAEConfig]`, *optional*): Emu3VQVAEConfig instance containing the configuration for the VQ-VAE model. text_config (`Union[Dict, Emu3TextConfig]``, *optional*): Emu3TextConfig instance containing the configuration for the language model. vocabulary_map (`dict`, *optional*): A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs. """ model_type = "emu3" keys_to_ignore_at_inference = ["past_key_values"] sub_configs = {"text_config": Emu3TextConfig, "vq_config": Emu3VQVAEConfig} def __init__( self, vq_config: Union[dict, Emu3VQVAEConfig] = None, text_config: Union[dict, Emu3TextConfig] = None, vocabulary_map: Optional[dict[int, int]] = None, **kwargs, ): if vq_config is None: vq_config = Emu3VQVAEConfig() elif isinstance(vq_config, dict): vq_config = Emu3VQVAEConfig(**vq_config) if text_config is None: text_config = Emu3TextConfig() elif isinstance(text_config, dict): text_config = Emu3TextConfig(**text_config) self.vq_config = vq_config self.text_config = text_config self.vocabulary_map = vocabulary_map self.image_token_id = vocabulary_map.get("") if vocabulary_map is not None else None super().__init__(**kwargs) __all__ = ["Emu3Config", "Emu3TextConfig", "Emu3VQVAEConfig"]