# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/lightglue/modular_lightglue.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_lightglue.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Callable, Optional, Union import numpy as np import torch from torch import nn from torch.nn.utils.rnn import pad_sequence from ...activations import ACT2FN from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ModelOutput, TransformersKwargs, auto_docstring from ...utils.generic import can_return_tuple from ..auto.modeling_auto import AutoModelForKeypointDetection from .configuration_lightglue import LightGlueConfig @dataclass @auto_docstring( custom_intro=""" Base class for outputs of LightGlue keypoint matching models. Due to the nature of keypoint detection and matching, the number of keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the batch of images, the maximum number of matches is set as the dimension of the matches and matching scores. The mask tensor is used to indicate which values in the keypoints, matches, matching_scores and prune tensors are keypoint matching information. """ ) class LightGlueKeypointMatchingOutput(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*): Loss computed during training. matches (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`): Index of keypoint matched in the other image. matching_scores (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`): Scores of predicted matches. keypoints (`torch.FloatTensor` of shape `(batch_size, num_keypoints, 2)`): Absolute (x, y) coordinates of predicted keypoints in a given image. prune (`torch.IntTensor` of shape `(batch_size, num_keypoints)`): Pruning mask indicating which keypoints are removed and at which layer. mask (`torch.BoolTensor` of shape `(batch_size, num_keypoints)`): Mask indicating which values in matches, matching_scores, keypoints and prune are keypoint matching information. hidden_states (`Tuple[torch.FloatTensor, ...]`, *optional*): Tuple of `torch.FloatTensor` (one for the output of each stage) of shape `(batch_size, 2, num_channels, num_keypoints)` returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True` attentions (`Tuple[torch.FloatTensor, ...]`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, 2, num_heads, num_keypoints, num_keypoints)` returned when `output_attentions=True` is passed or when `config.output_attentions=True` """ loss: Optional[torch.FloatTensor] = None matches: Optional[torch.FloatTensor] = None matching_scores: Optional[torch.FloatTensor] = None keypoints: Optional[torch.FloatTensor] = None prune: Optional[torch.IntTensor] = None mask: Optional[torch.FloatTensor] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None class LightGluePositionalEncoder(nn.Module): def __init__(self, config: LightGlueConfig): super().__init__() self.projector = nn.Linear(2, config.descriptor_dim // config.num_attention_heads // 2, bias=False) def forward( self, keypoints: torch.Tensor, output_hidden_states: Optional[bool] = False ) -> Union[tuple[torch.Tensor], tuple[torch.Tensor, torch.Tensor]]: projected_keypoints = self.projector(keypoints) embeddings = projected_keypoints.repeat_interleave(2, dim=-1) cosines = torch.cos(embeddings) sines = torch.sin(embeddings) embeddings = (cosines, sines) output = (embeddings, projected_keypoints) if output_hidden_states else (embeddings,) return output def rotate_half(x): # Split and rotate. Note that this function is different from e.g. Llama. x1 = x[..., ::2] x2 = x[..., 1::2] rot_x = torch.stack([-x2, x1], dim=-1).flatten(-2) return rot_x def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ dtype = q.dtype q = q.float() k = k.float() cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed.to(dtype=dtype), k_embed.to(dtype=dtype) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class LightGlueAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: LightGlueConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) is_cross_attention = encoder_hidden_states is not None current_states = encoder_hidden_states if is_cross_attention else hidden_states current_attention_mask = encoder_attention_mask if is_cross_attention else attention_mask key_states = self.k_proj(current_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(current_states).view(hidden_shape).transpose(1, 2) if position_embeddings is not None: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, current_attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class LightGlueMLP(nn.Module): def __init__(self, config: LightGlueConfig): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.intermediate_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.intermediate_size, elementwise_affine=True) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class LightGlueTransformerLayer(nn.Module): def __init__(self, config: LightGlueConfig, layer_idx: int): super().__init__() self.self_attention = LightGlueAttention(config, layer_idx) self.self_mlp = LightGlueMLP(config) self.cross_attention = LightGlueAttention(config, layer_idx) self.cross_mlp = LightGlueMLP(config) def forward( self, descriptors: torch.Tensor, keypoints: torch.Tensor, attention_mask: torch.Tensor, output_hidden_states: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> tuple[torch.Tensor, Optional[tuple[torch.Tensor]], Optional[tuple[torch.Tensor]]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (descriptors,) batch_size, num_keypoints, descriptor_dim = descriptors.shape # Self attention block attention_output, self_attentions = self.self_attention( descriptors, position_embeddings=keypoints, attention_mask=attention_mask, output_attentions=output_attentions, ) intermediate_states = torch.cat([descriptors, attention_output], dim=-1) output_states = self.self_mlp(intermediate_states) self_attention_descriptors = descriptors + output_states if output_hidden_states: self_attention_hidden_states = (intermediate_states, output_states) # Reshape hidden_states to group by image_pairs : # (batch_size, num_keypoints, descriptor_dim) -> (batch_size, 2, num_keypoints, descriptor_dim) # Flip dimension 1 to perform cross attention : # (image0, image1) -> (image1, image0) # Reshape back to original shape : # (batch_size, 2, num_keypoints, descriptor_dim) -> (batch_size, num_keypoints, descriptor_dim) encoder_hidden_states = ( self_attention_descriptors.reshape(-1, 2, num_keypoints, descriptor_dim) .flip(1) .reshape(batch_size, num_keypoints, descriptor_dim) ) # Same for mask encoder_attention_mask = ( attention_mask.reshape(-1, 2, 1, 1, num_keypoints).flip(1).reshape(batch_size, 1, 1, num_keypoints) if attention_mask is not None else None ) # Cross attention block cross_attention_output, cross_attentions = self.cross_attention( self_attention_descriptors, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) cross_intermediate_states = torch.cat([self_attention_descriptors, cross_attention_output], dim=-1) cross_output_states = self.cross_mlp(cross_intermediate_states) descriptors = self_attention_descriptors + cross_output_states if output_hidden_states: cross_attention_hidden_states = (cross_intermediate_states, cross_output_states) all_hidden_states = ( all_hidden_states + (self_attention_descriptors.reshape(batch_size, num_keypoints, descriptor_dim),) + self_attention_hidden_states + (descriptors.reshape(batch_size, num_keypoints, descriptor_dim),) + cross_attention_hidden_states ) if output_attentions: all_attentions = all_attentions + (self_attentions,) + (cross_attentions,) return descriptors, all_hidden_states, all_attentions def sigmoid_log_double_softmax( similarity: torch.Tensor, matchability0: torch.Tensor, matchability1: torch.Tensor ) -> torch.Tensor: """create the log assignment matrix from logits and similarity""" batch_size, num_keypoints_0, num_keypoints_1 = similarity.shape certainties = nn.functional.logsigmoid(matchability0) + nn.functional.logsigmoid(matchability1).transpose(1, 2) scores0 = nn.functional.log_softmax(similarity, 2) scores1 = nn.functional.log_softmax(similarity.transpose(-1, -2).contiguous(), 2).transpose(-1, -2) scores = similarity.new_full((batch_size, num_keypoints_0 + 1, num_keypoints_1 + 1), 0) scores[:, :num_keypoints_0, :num_keypoints_1] = scores0 + scores1 + certainties scores[:, :-1, -1] = nn.functional.logsigmoid(-matchability0.squeeze(-1)) scores[:, -1, :-1] = nn.functional.logsigmoid(-matchability1.squeeze(-1)) return scores class LightGlueMatchAssignmentLayer(nn.Module): def __init__(self, config: LightGlueConfig): super().__init__() self.descriptor_dim = config.descriptor_dim self.final_projection = nn.Linear(self.descriptor_dim, self.descriptor_dim, bias=True) self.matchability = nn.Linear(self.descriptor_dim, 1, bias=True) def forward(self, descriptors: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: batch_size, num_keypoints, descriptor_dim = descriptors.shape # Final projection and similarity computation m_descriptors = self.final_projection(descriptors) m_descriptors = m_descriptors / torch.tensor(self.descriptor_dim, device=m_descriptors.device) ** 0.25 m_descriptors = m_descriptors.reshape(batch_size // 2, 2, num_keypoints, descriptor_dim) m_descriptors0 = m_descriptors[:, 0] m_descriptors1 = m_descriptors[:, 1] similarity = m_descriptors0 @ m_descriptors1.transpose(-1, -2) if mask is not None: mask = mask.reshape(batch_size // 2, 2, num_keypoints) mask0 = mask[:, 0].unsqueeze(-1) mask1 = mask[:, 1].unsqueeze(-1).transpose(-1, -2) mask = mask0 * mask1 similarity = similarity.masked_fill(mask == 0, torch.finfo(similarity.dtype).min) # Compute matchability of descriptors matchability = self.matchability(descriptors) matchability = matchability.reshape(batch_size // 2, 2, num_keypoints, 1) matchability_0 = matchability[:, 0] matchability_1 = matchability[:, 1] # Compute scores from similarity and matchability scores = sigmoid_log_double_softmax(similarity, matchability_0, matchability_1) return scores def get_matchability(self, descriptors: torch.Tensor) -> torch.Tensor: """Get matchability of descriptors as a probability""" matchability = self.matchability(descriptors) matchability = nn.functional.sigmoid(matchability).squeeze(-1) return matchability class LightGlueTokenConfidenceLayer(nn.Module): def __init__(self, config: LightGlueConfig): super().__init__() self.token = nn.Linear(config.descriptor_dim, 1) def forward(self, descriptors: torch.Tensor) -> torch.Tensor: token = self.token(descriptors.detach()) token = nn.functional.sigmoid(token).squeeze(-1) return token @auto_docstring class LightGluePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config: LightGlueConfig base_model_prefix = "lightglue" main_input_name = "pixel_values" supports_gradient_checkpointing = False _supports_flash_attn = True _supports_sdpa = True def get_matches_from_scores(scores: torch.Tensor, threshold: float) -> tuple[torch.Tensor, torch.Tensor]: """obtain matches from a score matrix [Bx M+1 x N+1]""" batch_size, _, _ = scores.shape # For each keypoint, get the best match max0 = scores[:, :-1, :-1].max(2) max1 = scores[:, :-1, :-1].max(1) matches0 = max0.indices matches1 = max1.indices # Mutual check for matches indices0 = torch.arange(matches0.shape[1], device=matches0.device)[None] indices1 = torch.arange(matches1.shape[1], device=matches1.device)[None] mutual0 = indices0 == matches1.gather(1, matches0) mutual1 = indices1 == matches0.gather(1, matches1) # Get matching scores and filter based on mutual check and thresholding max0 = max0.values.exp() zero = max0.new_tensor(0) matching_scores0 = torch.where(mutual0, max0, zero) matching_scores1 = torch.where(mutual1, matching_scores0.gather(1, matches1), zero) valid0 = mutual0 & (matching_scores0 > threshold) valid1 = mutual1 & valid0.gather(1, matches1) # Filter matches based on mutual check and thresholding of scores matches0 = torch.where(valid0, matches0, -1) matches1 = torch.where(valid1, matches1, -1) matches = torch.stack([matches0, matches1]).transpose(0, 1).reshape(batch_size * 2, -1) matching_scores = torch.stack([matching_scores0, matching_scores1]).transpose(0, 1).reshape(batch_size * 2, -1) return matches, matching_scores def normalize_keypoints(keypoints: torch.Tensor, height: int, width: int) -> torch.Tensor: """ Normalize keypoints locations based on image image_shape Args: keypoints (`torch.Tensor` of shape `(batch_size, num_keypoints, 2)`): Keypoints locations in (x, y) format. height (`int`): Image height. width (`int`): Image width. Returns: Normalized keypoints locations of shape (`torch.Tensor` of shape `(batch_size, num_keypoints, 2)`). """ size = torch.tensor([width, height], device=keypoints.device, dtype=keypoints.dtype)[None] shift = size / 2 scale = size.max(-1).values / 2 keypoints = (keypoints - shift[..., None, :]) / scale[..., None, None] return keypoints @auto_docstring( custom_intro=""" LightGlue model taking images as inputs and outputting the matching of them. """ ) class LightGlueForKeypointMatching(LightGluePreTrainedModel): """ LightGlue is a model matching keypoints in images by leveraging detections from a keypoint detector such as SuperPoint. It is based on the SuperGlue architecture and is designed to be lightweight and efficient. It consists of : 1. Keypoint Encoder 2. A Graph Neural Network with self and cross attention layers 3. Matching Assignment layers The correspondence ids use -1 to indicate non-matching points. Philipp Lindenberger, Paul-Edouard Sarlin and Marc Pollefeys. LightGlue: Local Feature Matching at Light Speed. In ICCV 2023. https://arxiv.org/pdf/2306.13643.pdf """ def __init__(self, config: LightGlueConfig): super().__init__(config) self.keypoint_detector = AutoModelForKeypointDetection.from_config( config.keypoint_detector_config, trust_remote_code=config.trust_remote_code ) self.keypoint_detector_descriptor_dim = config.keypoint_detector_config.descriptor_decoder_dim self.descriptor_dim = config.descriptor_dim self.num_layers = config.num_hidden_layers self.filter_threshold = config.filter_threshold self.depth_confidence = config.depth_confidence self.width_confidence = config.width_confidence if self.descriptor_dim != self.keypoint_detector_descriptor_dim: self.input_projection = nn.Linear(self.keypoint_detector_descriptor_dim, self.descriptor_dim, bias=True) else: self.input_projection = nn.Identity() self.positional_encoder = LightGluePositionalEncoder(config) self.transformer_layers = nn.ModuleList( [LightGlueTransformerLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) self.match_assignment_layers = nn.ModuleList( [LightGlueMatchAssignmentLayer(config) for _ in range(config.num_hidden_layers)] ) self.token_confidence = nn.ModuleList( [LightGlueTokenConfidenceLayer(config) for _ in range(config.num_hidden_layers - 1)] ) self.post_init() def _get_confidence_threshold(self, layer_index: int) -> float: """scaled confidence threshold for a given layer""" threshold = 0.8 + 0.1 * np.exp(-4.0 * layer_index / self.num_layers) return np.clip(threshold, 0, 1) def _keypoint_processing( self, descriptors: torch.Tensor, keypoints: torch.Tensor, output_hidden_states: Optional[bool] = False ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]: descriptors = descriptors.detach().contiguous() projected_descriptors = self.input_projection(descriptors) keypoint_encoding_output = self.positional_encoder(keypoints, output_hidden_states=output_hidden_states) return projected_descriptors, keypoint_encoding_output def _get_early_stopped_image_pairs( self, keypoint_confidences: torch.Tensor, layer_index: int, mask: torch.Tensor, num_points: torch.Tensor ) -> torch.Tensor: """evaluate whether we should stop inference based on the confidence of the keypoints""" batch_size, _ = mask.shape if layer_index < self.num_layers - 1: # If the current layer is not the last layer, we compute the confidence of the keypoints and check # if we should stop the forward pass through the transformer layers for each pair of images. keypoint_confidences = keypoint_confidences.masked_fill(mask == 0, 1) keypoint_confidences = keypoint_confidences.reshape(batch_size // 2, -1) threshold = self._get_confidence_threshold(layer_index) ratio_confident = 1.0 - (keypoint_confidences < threshold).float().sum(dim=1) / num_points early_stopped_pairs = ratio_confident > self.depth_confidence else: # If the current layer is the last layer, we stop the forward pass through the transformer layers for # all pairs of images. early_stopped_pairs = torch.ones(batch_size, dtype=torch.bool) return early_stopped_pairs def _get_keypoint_matching(self, descriptors, mask, layer_index, early_stops=None): if early_stops is not None: descriptors = descriptors[early_stops] mask = mask[early_stops] scores = self.match_assignment_layers[layer_index](descriptors, mask) matches, matching_scores = get_matches_from_scores(scores, self.filter_threshold) return matches, matching_scores def _get_pruning_mask(self, confidences: torch.Tensor, scores: torch.Tensor, layer_index: int) -> torch.Tensor: """mask points which should be removed""" keep = scores > (1 - self.width_confidence) if confidences is not None: # Low-confidence points are never pruned. keep |= confidences <= self._get_confidence_threshold(layer_index) return keep def _do_layer_keypoint_pruning( self, descriptors: torch.Tensor, keypoints: torch.Tensor, mask: torch.Tensor, indices: torch.Tensor, prune_output: torch.Tensor, keypoint_confidences: torch.Tensor, layer_index: int, ): """ For a given layer, prune keypoints based on the confidence of the keypoints and the matchability of the descriptors. """ batch_size, _, _ = descriptors.shape descriptors_matchability = self.match_assignment_layers[layer_index].get_matchability(descriptors) pruned_keypoints_mask = self._get_pruning_mask(keypoint_confidences, descriptors_matchability, layer_index) pruned_keypoints_mask = pruned_keypoints_mask.masked_fill(mask == 0, torch.tensor(False)) # For each image, we extract the pruned indices and the corresponding descriptors and keypoints. pruned_descriptors, pruned_keypoints_0, pruned_keypoints_1, pruned_mask, pruned_indices = ( [t[mask] for t, mask in zip(tensor, pruned_keypoints_mask)] for tensor in [descriptors, keypoints[0], keypoints[1], pruned_keypoints_mask, indices] ) for i in range(batch_size): prune_output[i, pruned_indices[i]] += 1 # Pad the pruned descriptors, keypoints, indices and mask to have the same shape across the batch. pruned_descriptors, pruned_keypoints_0, pruned_keypoints_1, pruned_mask = ( pad_sequence(pruned_tensor, batch_first=True) for pruned_tensor in [pruned_descriptors, pruned_keypoints_0, pruned_keypoints_1, pruned_mask] ) pruned_keypoints = (pruned_keypoints_0, pruned_keypoints_1) pruned_indices = pad_sequence(pruned_indices, batch_first=True, padding_value=-1) return pruned_descriptors, pruned_keypoints, pruned_indices, pruned_mask, prune_output def _concat_early_stopped_outputs( self, early_stops_indices, final_pruned_keypoints_indices, final_pruned_keypoints_iterations, matches, matching_scores, ): early_stops_indices = torch.stack(early_stops_indices) matches, final_pruned_keypoints_indices = ( pad_sequence(tensor, batch_first=True, padding_value=-1) for tensor in [matches, final_pruned_keypoints_indices] ) matching_scores, final_pruned_keypoints_iterations = ( pad_sequence(tensor, batch_first=True, padding_value=0) for tensor in [matching_scores, final_pruned_keypoints_iterations] ) matches, matching_scores, final_pruned_keypoints_indices, final_pruned_keypoints_iterations = ( tensor[early_stops_indices] for tensor in [ matches, matching_scores, final_pruned_keypoints_indices, final_pruned_keypoints_iterations, ] ) return final_pruned_keypoints_indices, final_pruned_keypoints_iterations, matches, matching_scores def _do_final_keypoint_pruning( self, indices: torch.Tensor, matches: torch.Tensor, matching_scores: torch.Tensor, num_keypoints: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: # (batch_size, num_keypoints) -> (batch_size // 2, 2, num_keypoints) -> 2 * (batch_size // 2, num_keypoints) to # have tensors from batch_size, _ = indices.shape indices, matches, matching_scores = ( tensor.reshape(batch_size // 2, 2, -1) for tensor in [indices, matches, matching_scores] ) indices0 = indices[:, 0] indices1 = indices[:, 1] matches0 = matches[:, 0] matches1 = matches[:, 1] matching_scores0 = matching_scores[:, 0] matching_scores1 = matching_scores[:, 1] # Prepare final matches and matching scores _matches = torch.full((batch_size // 2, 2, num_keypoints), -1, device=indices.device, dtype=matches.dtype) _matching_scores = torch.zeros( (batch_size // 2, 2, num_keypoints), device=indices.device, dtype=matching_scores.dtype ) # Fill the matches and matching scores for each image pair for i in range(batch_size // 2): _matches[i, 0, indices0[i]] = torch.where( matches0[i] == -1, -1, indices1[i].gather(0, matches0[i].clamp(min=0)) ) _matches[i, 1, indices1[i]] = torch.where( matches1[i] == -1, -1, indices0[i].gather(0, matches1[i].clamp(min=0)) ) _matching_scores[i, 0, indices0[i]] = matching_scores0[i] _matching_scores[i, 1, indices1[i]] = matching_scores1[i] return _matches, _matching_scores def _match_image_pair( self, keypoints: torch.Tensor, descriptors: torch.Tensor, height: int, width: int, mask: torch.Tensor = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, tuple, tuple]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if keypoints.shape[2] == 0: # no keypoints shape = keypoints.shape[:-1] return ( keypoints.new_full(shape, -1, dtype=torch.int), keypoints.new_zeros(shape), keypoints.new_zeros(shape), all_hidden_states, all_attentions, ) device = keypoints.device batch_size, _, initial_num_keypoints, _ = keypoints.shape num_points_per_pair = torch.sum(mask.reshape(batch_size, -1), dim=1) # (batch_size, 2, num_keypoints, 2) -> (batch_size * 2, num_keypoints, 2) keypoints = keypoints.reshape(batch_size * 2, initial_num_keypoints, 2) mask = mask.reshape(batch_size * 2, initial_num_keypoints) if mask is not None else None descriptors = descriptors.reshape(batch_size * 2, initial_num_keypoints, self.keypoint_detector_descriptor_dim) image_indices = torch.arange(batch_size * 2, device=device) # Keypoint normalization keypoints = normalize_keypoints(keypoints, height, width) descriptors, keypoint_encoding_output = self._keypoint_processing( descriptors, keypoints, output_hidden_states=output_hidden_states ) keypoints = keypoint_encoding_output[0] # Early stop consists of stopping the forward pass through the transformer layers when the confidence of the # keypoints is above a certain threshold. do_early_stop = self.depth_confidence > 0 # Keypoint pruning consists of removing keypoints from the input of the transformer layers when the confidence of # the keypoints is below a certain threshold. do_keypoint_pruning = self.width_confidence > 0 early_stops_indices = [] matches = [] matching_scores = [] final_pruned_keypoints_indices = [] final_pruned_keypoints_iterations = [] pruned_keypoints_indices = torch.arange(0, initial_num_keypoints, device=device).expand(batch_size * 2, -1) pruned_keypoints_iterations = torch.ones_like(pruned_keypoints_indices) for layer_index in range(self.num_layers): input_shape = descriptors.size() if mask is not None: extended_attention_mask = self.get_extended_attention_mask(mask, input_shape) else: extended_attention_mask = torch.ones((batch_size, input_shape[-2]), device=keypoints.device) layer_output = self.transformer_layers[layer_index]( descriptors, keypoints, attention_mask=extended_attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) descriptors, hidden_states, attention = layer_output if output_hidden_states: all_hidden_states = all_hidden_states + hidden_states if output_attentions: all_attentions = all_attentions + attention if do_early_stop: if layer_index < self.num_layers - 1: # Get the confidence of the keypoints for the current layer keypoint_confidences = self.token_confidence[layer_index](descriptors) # Determine which pairs of images should be early stopped based on the confidence of the keypoints for # the current layer. early_stopped_pairs = self._get_early_stopped_image_pairs( keypoint_confidences, layer_index, mask, num_points=num_points_per_pair ) else: # Early stopping always occurs at the last layer early_stopped_pairs = torch.ones(batch_size, dtype=torch.bool) if torch.any(early_stopped_pairs): # If a pair of images is considered early stopped, we compute the matches for the remaining # keypoints and stop the forward pass through the transformer layers for this pair of images. early_stops = early_stopped_pairs.repeat_interleave(2) early_stopped_image_indices = image_indices[early_stops] early_stopped_matches, early_stopped_matching_scores = self._get_keypoint_matching( descriptors, mask, layer_index, early_stops=early_stops ) early_stops_indices.extend(list(early_stopped_image_indices)) matches.extend(list(early_stopped_matches)) matching_scores.extend(list(early_stopped_matching_scores)) if do_keypoint_pruning: final_pruned_keypoints_indices.extend(list(pruned_keypoints_indices[early_stops])) final_pruned_keypoints_iterations.extend(list(pruned_keypoints_iterations[early_stops])) # Remove image pairs that have been early stopped from the forward pass num_points_per_pair = num_points_per_pair[~early_stopped_pairs] descriptors, keypoints_0, keypoint_1, mask, image_indices = tuple( tensor[~early_stops] for tensor in [descriptors, keypoints[0], keypoints[1], mask, image_indices] ) keypoints = (keypoints_0, keypoint_1) if do_keypoint_pruning: pruned_keypoints_indices, pruned_keypoints_iterations, keypoint_confidences = tuple( tensor[~early_stops] for tensor in [ pruned_keypoints_indices, pruned_keypoints_iterations, keypoint_confidences, ] ) # If all pairs of images are early stopped, we stop the forward pass through the transformer # layers for all pairs of images. if torch.all(early_stopped_pairs): break if do_keypoint_pruning: # Prune keypoints from the input of the transformer layers for the next iterations if the confidence of # the keypoints is below a certain threshold. descriptors, keypoints, pruned_keypoints_indices, mask, pruned_keypoints_iterations = ( self._do_layer_keypoint_pruning( descriptors, keypoints, mask, pruned_keypoints_indices, pruned_keypoints_iterations, keypoint_confidences, layer_index, ) ) if do_early_stop and do_keypoint_pruning: # Concatenate early stopped outputs together and perform final keypoint pruning final_pruned_keypoints_indices, final_pruned_keypoints_iterations, matches, matching_scores = ( self._concat_early_stopped_outputs( early_stops_indices, final_pruned_keypoints_indices, final_pruned_keypoints_iterations, matches, matching_scores, ) ) matches, matching_scores = self._do_final_keypoint_pruning( final_pruned_keypoints_indices, matches, matching_scores, initial_num_keypoints, ) else: matches, matching_scores = self._get_keypoint_matching(descriptors, mask, self.num_layers - 1) final_pruned_keypoints_iterations = torch.ones_like(matching_scores) * self.num_layers final_pruned_keypoints_iterations = final_pruned_keypoints_iterations.reshape( batch_size, 2, initial_num_keypoints ) return ( matches, matching_scores, final_pruned_keypoints_iterations, all_hidden_states, all_attentions, ) @can_return_tuple @auto_docstring def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[tuple, LightGlueKeypointMatchingOutput]: loss = None if labels is not None: raise ValueError("LightGlue is not trainable, no labels should be provided.") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if pixel_values.ndim != 5 or pixel_values.size(1) != 2: raise ValueError("Input must be a 5D tensor of shape (batch_size, 2, num_channels, height, width)") batch_size, _, channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(batch_size * 2, channels, height, width) keypoint_detections = self.keypoint_detector(pixel_values) keypoints, _, descriptors, mask = keypoint_detections[:4] keypoints = keypoints.reshape(batch_size, 2, -1, 2).to(pixel_values) descriptors = descriptors.reshape(batch_size, 2, -1, self.keypoint_detector_descriptor_dim).to(pixel_values) mask = mask.reshape(batch_size, 2, -1) absolute_keypoints = keypoints.clone() absolute_keypoints[:, :, :, 0] = absolute_keypoints[:, :, :, 0] * width absolute_keypoints[:, :, :, 1] = absolute_keypoints[:, :, :, 1] * height matches, matching_scores, prune, hidden_states, attentions = self._match_image_pair( absolute_keypoints, descriptors, height, width, mask=mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) return LightGlueKeypointMatchingOutput( loss=loss, matches=matches, matching_scores=matching_scores, keypoints=keypoints, prune=prune, mask=mask, hidden_states=hidden_states, attentions=attentions, ) __all__ = ["LightGluePreTrainedModel", "LightGlueForKeypointMatching"]