# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/voxtral/modular_voxtral.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_voxtral.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Callable, Optional, Union import torch from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache from ...generation import GenerationMixin from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging from ...utils.generic import check_model_inputs from ..auto import AutoModel, AutoModelForCausalLM from .configuration_voxtral import VoxtralConfig, VoxtralEncoderConfig logger = logging.get_logger(__name__) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: Optional[float] = None, dropout: float = 0.0, head_mask: Optional[torch.Tensor] = None, **kwargs, ): if scaling is None: scaling = query.size(-1) ** -0.5 attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling if attention_mask is not None and attention_mask.ndim == 4: attn_weights = attn_weights + attention_mask[:, :, :, : key.shape[-2]] attn_weights = nn.functional.softmax(attn_weights, dim=-1) if head_mask is not None: attn_weights = attn_weights * head_mask.view(1, -1, 1, 1) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class VoxtralAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, layer_idx: Optional[int] = None, config: Optional[VoxtralConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal if layer_idx is None and is_decoder: logger.warning_once( f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.layer_idx = layer_idx self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, _ = hidden_states.size() # Scaling is susceptible to floating point arithmetics' inprecisions # which can lead to different results (this is dependent from model # to model, e.g. whisper is one such case). We therefore keep the # original order of scaling to follow the original implementation # and enforce no scaling (1.0) in the attention call below. query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.dropout, scaling=1.0, output_attentions=output_attentions, head_mask=layer_head_mask, **kwargs, ) attn_output = attn_output.reshape(bsz, tgt_len, -1).contiguous() attn_output = self.out_proj(attn_output) return attn_output, attn_weights class VoxtralEncoderLayer(GradientCheckpointingLayer): def __init__(self, config: VoxtralConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = VoxtralAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) return hidden_states, attn_weights @auto_docstring class VoxtralPreTrainedModel(PreTrainedModel): config: VoxtralConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = None _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_attention_backend = True _can_compile_fullgraph = True def _init_weights(self, module): # important: this ported version of Voxtral isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.audio_config.initializer_range ) if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @auto_docstring( custom_intro=""" The Voxtral encoder, which is a Whisper encoder. """ ) class VoxtralEncoder(VoxtralPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`VoxtralEncoderLayer`]. Args: config: VoxtralEncoderConfig """ # Ignore copy config: VoxtralEncoderConfig main_input_name = "input_features" _no_split_modules = ["VoxtralEncoderLayer"] _can_record_outputs = { "attentions": VoxtralAttention, "hidden_states": VoxtralEncoderLayer, } def __init__(self, config: VoxtralEncoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.num_mel_bins = config.num_mel_bins self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) self.embed_positions.requires_grad_(False) self.layers = nn.ModuleList([VoxtralEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) # Ignore copy self.avg_pooler = nn.AvgPool1d(2, stride=2) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def get_input_embeddings(self) -> nn.Module: return self.conv1 def set_input_embeddings(self, value: nn.Module): self.conv1 = value @check_model_inputs def forward( self, input_features, attention_mask=None, **kwargs: Unpack[TransformersKwargs], ): r""" Args: input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`torch.Tensor`)`, *optional*): Voxtral does not support masking of the `input_features`, this argument is preserved for compatibility, but it is not used. By default the silence in the input log mel spectrogram are ignored. """ expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0] if input_features.shape[-1] != expected_seq_length: raise ValueError( f"Qwen2Audio expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." ) input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device) inputs_embeds = nn.functional.gelu(self.conv1(input_features)) inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) inputs_embeds = inputs_embeds.permute(0, 2, 1) embed_pos = self.embed_positions.weight hidden_states = (inputs_embeds + embed_pos).to(inputs_embeds.dtype) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) for idx, encoder_layer in enumerate(self.layers): layer_outputs = encoder_layer( hidden_states, attention_mask=attention_mask, layer_head_mask=None, ) hidden_states = layer_outputs[0] hidden_states = self.layer_norm(hidden_states) return BaseModelOutput( last_hidden_state=hidden_states, ) # Ignore copy def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers and the output length of the audio encoder """ input_lengths = (input_lengths - 1) // 2 + 1 output_lengths = (input_lengths - 2) // 2 + 1 return input_lengths, output_lengths class VoxtralMultiModalProjector(nn.Module): def __init__(self, config: VoxtralConfig): super().__init__() self.linear_1 = nn.Linear(config.audio_config.intermediate_size, config.text_config.hidden_size, bias=False) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=False) def forward(self, audio_features): hidden_states = self.linear_1(audio_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states @auto_docstring( custom_intro=""" The Voxtral model, which consists of Whisper encoder, a multi-modal projector and a LLama language model. """ ) class VoxtralForConditionalGeneration(VoxtralPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} _keep_in_fp32_modules_strict = ["embed_positions"] def __init__(self, config): super().__init__(config) self.vocab_size = config.text_config.vocab_size self.audio_tower = AutoModel.from_config(config.audio_config) self.language_model = AutoModelForCausalLM.from_config(config.text_config) self.multi_modal_projector = VoxtralMultiModalProjector(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def get_audio_embeds(self, input_features: torch.FloatTensor): """ This method is used to get the audio embeddings from input features (a log mel spectrogram), meaning inferring the audio encoder and the multi-modal projector. Args: input_features (`torch.FloatTensor`): Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] Returns: `torch.FloatTensor`: The audio embeddings. """ audio_outputs = self.audio_tower(input_features) audio_hidden_states = audio_outputs.last_hidden_state audio_hidden_states = audio_hidden_states.reshape(-1, self.config.audio_config.intermediate_size) audio_embeds = self.multi_modal_projector(audio_hidden_states) return audio_embeds @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" Example: ```python >>> from transformers import VoxtralForConditionalGeneration, AutoProcessor >>> import torch >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> repo_id = "mistralai/Voxtral-Mini-3B-2507" >>> processor = AutoProcessor.from_pretrained(repo_id) >>> model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device) >>> conversation = [ { "role": "user", "content": [ { "type": "audio", "url": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav", }, {"type": "text", "text": "What can you tell me about this audio?"}, ], } ] >>> inputs = processor.apply_chat_template(conversation) >>> inputs = inputs.to(device, dtype=torch.bfloat16) >>> outputs = model.generate(**inputs, max_new_tokens=30) >>> processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True) ["This audio is a humorous conversation between two friends, likely in English, where one of them is trying to figure out what the other's tattoo says."] ```""" if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if input_features is not None: audio_embeds = self.get_audio_embeds(input_features) # replace text-audio token placeholders with audio embeddings audio_token_mask = input_ids == self.config.audio_token_id inputs_embeds[audio_token_mask] = audio_embeds outputs: BaseModelOutputWithPast = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) return outputs def prepare_inputs_for_generation(self, *args, **kwargs): # Overwritten -- we should not pass input_features when we are in cached decoding stage input_features = kwargs.pop("input_features", None) cache_position = kwargs.get("cache_position") model_inputs = super().prepare_inputs_for_generation(*args, **kwargs) if cache_position is not None and cache_position[0] == 0: # input_features should only be passed when we are not in cached decoding stage model_inputs["input_features"] = input_features return model_inputs __all__ = ["VoxtralPreTrainedModel", "VoxtralEncoder", "VoxtralForConditionalGeneration"]