# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_auto_round_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class AutoRoundQuantizer(HfQuantizer): """ Quantizer of the AutoRound method. (https://huggingface.co/papers/2309.05516) """ # AutoRound requires data calibration - we support only inference requires_calibration = True required_packages = ["auto_round"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, *args, **kwargs): self.device_map = kwargs.get("device_map", None) if not is_auto_round_available(): raise ImportError( "Loading an AutoRound quantized model requires auto-round library (`pip install 'auto-round>=0.5'`)" ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.bfloat16 logger.info("Loading the model in `torch.bfloat16`. To overwrite it, set `torch_dtype` manually.") return torch_dtype def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): if model.__class__.main_input_name != "input_ids": logger.warning("AutoRound offers only limited support for models that are not strictly text-based.") from auto_round.inference.convert_model import convert_hf_model, infer_target_device if self.pre_quantized: target_device = infer_target_device(self.device_map) model, used_backends = convert_hf_model(model, target_device) self.used_backends = used_backends def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): if self.pre_quantized: from auto_round.inference.convert_model import post_init post_init(model, self.used_backends) else: raise ValueError("AutoRound only sports pre-quantized models.") @property def is_trainable(self) -> bool: return False def is_serializable(self, safe_serialization=None): ## for gptq/awq models, the quantization config will be changed return True