import base64 from typing import Any, Dict, Optional, Union from huggingface_hub.hf_api import InferenceProviderMapping from huggingface_hub.inference._common import RequestParameters, _as_dict from huggingface_hub.inference._providers._common import BaseConversationalTask, TaskProviderHelper, filter_none class HyperbolicTextToImageTask(TaskProviderHelper): def __init__(self): super().__init__(provider="hyperbolic", base_url="https://api.hyperbolic.xyz", task="text-to-image") def _prepare_route(self, mapped_model: str, api_key: str) -> str: return "/v1/images/generations" def _prepare_payload_as_dict( self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping ) -> Optional[Dict]: mapped_model = provider_mapping_info.provider_id parameters = filter_none(parameters) if "num_inference_steps" in parameters: parameters["steps"] = parameters.pop("num_inference_steps") if "guidance_scale" in parameters: parameters["cfg_scale"] = parameters.pop("guidance_scale") # For Hyperbolic, the width and height are required parameters if "width" not in parameters: parameters["width"] = 512 if "height" not in parameters: parameters["height"] = 512 return {"prompt": inputs, "model_name": mapped_model, **parameters} def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: response_dict = _as_dict(response) return base64.b64decode(response_dict["images"][0]["image"]) class HyperbolicTextGenerationTask(BaseConversationalTask): """ Special case for Hyperbolic, where text-generation task is handled as a conversational task. """ def __init__(self, task: str): super().__init__( provider="hyperbolic", base_url="https://api.hyperbolic.xyz", ) self.task = task