# Reference MPMATH implementation: # # import mpmath # from mpmath import nsum # # def Wright_Series_MPMATH(a, b, z, dps=50, method='r+s+e', steps=[1000]): # """Compute Wright' generalized Bessel function as Series. # # This uses mpmath for arbitrary precision. # """ # with mpmath.workdps(dps): # res = nsum(lambda k: z**k/mpmath.fac(k) * mpmath.rgamma(a*k+b), # [0, mpmath.inf], # tol=dps, method=method, steps=steps # ) # # return res from itertools import product import pytest import numpy as np from numpy.testing import assert_equal, assert_allclose import scipy.special as sc from scipy.special import log_wright_bessel, loggamma, rgamma, wright_bessel @pytest.mark.parametrize('a', [0, 1e-6, 0.1, 0.5, 1, 10]) @pytest.mark.parametrize('b', [0, 1e-6, 0.1, 0.5, 1, 10]) def test_wright_bessel_zero(a, b): """Test at x = 0.""" assert_equal(wright_bessel(a, b, 0.), rgamma(b)) assert_allclose(log_wright_bessel(a, b, 0.), -loggamma(b)) @pytest.mark.parametrize('b', [0, 1e-6, 0.1, 0.5, 1, 10]) @pytest.mark.parametrize('x', [0, 1e-6, 0.1, 0.5, 1]) def test_wright_bessel_iv(b, x): """Test relation of wright_bessel and modified bessel function iv. iv(z) = (1/2*z)**v * Phi(1, v+1; 1/4*z**2). See https://dlmf.nist.gov/10.46.E2 """ if x != 0: v = b - 1 wb = wright_bessel(1, v + 1, x**2 / 4.) # Note: iv(v, x) has precision of less than 1e-12 for some cases # e.g v=1-1e-6 and x=1e-06) assert_allclose(np.power(x / 2., v) * wb, sc.iv(v, x), rtol=1e-11, atol=1e-11) @pytest.mark.parametrize('a', [0, 1e-6, 0.1, 0.5, 1, 10]) @pytest.mark.parametrize('b', [1, 1 + 1e-3, 2, 5, 10]) @pytest.mark.parametrize('x', [0, 1e-6, 0.1, 0.5, 1, 5, 10, 100]) def test_wright_functional(a, b, x): """Test functional relation of wright_bessel. Phi(a, b-1, z) = a*z*Phi(a, b+a, z) + (b-1)*Phi(a, b, z) Note that d/dx Phi(a, b, x) = Phi(a, b-1, x) See Eq. (22) of B. Stankovic, On the Function of E. M. Wright, Publ. de l' Institut Mathematique, Beograd, Nouvelle S`er. 10 (1970), 113-124. """ assert_allclose(wright_bessel(a, b - 1, x), a * x * wright_bessel(a, b + a, x) + (b - 1) * wright_bessel(a, b, x), rtol=1e-8, atol=1e-8) # grid of rows [a, b, x, value, accuracy] that do not reach 1e-11 accuracy # see output of: # cd scipy/scipy/_precompute # python wright_bessel_data.py grid_a_b_x_value_acc = np.array([ [0.1, 100.0, 709.7827128933841, 8.026353022981087e+34, 2e-8], [0.5, 10.0, 709.7827128933841, 2.680788404494657e+48, 9e-8], [0.5, 10.0, 1000.0, 2.005901980702872e+64, 1e-8], [0.5, 100.0, 1000.0, 3.4112367580445246e-117, 6e-8], [1.0, 20.0, 100000.0, 1.7717158630699857e+225, 3e-11], [1.0, 100.0, 100000.0, 1.0269334596230763e+22, np.nan], [1.0000000000000222, 20.0, 100000.0, 1.7717158630001672e+225, 3e-11], [1.0000000000000222, 100.0, 100000.0, 1.0269334595866202e+22, np.nan], [1.5, 0.0, 500.0, 15648961196.432373, 3e-11], [1.5, 2.220446049250313e-14, 500.0, 15648961196.431465, 3e-11], [1.5, 1e-10, 500.0, 15648961192.344728, 3e-11], [1.5, 1e-05, 500.0, 15648552437.334162, 3e-11], [1.5, 0.1, 500.0, 12049870581.10317, 2e-11], [1.5, 20.0, 100000.0, 7.81930438331405e+43, 3e-9], [1.5, 100.0, 100000.0, 9.653370857459075e-130, np.nan], ]) @pytest.mark.xfail @pytest.mark.parametrize( 'a, b, x, phi', grid_a_b_x_value_acc[:, :4].tolist()) def test_wright_data_grid_failures(a, b, x, phi): """Test cases of test_data that do not reach relative accuracy of 1e-11""" assert_allclose(wright_bessel(a, b, x), phi, rtol=1e-11) @pytest.mark.parametrize( 'a, b, x, phi, accuracy', grid_a_b_x_value_acc.tolist()) def test_wright_data_grid_less_accurate(a, b, x, phi, accuracy): """Test cases of test_data that do not reach relative accuracy of 1e-11 Here we test for reduced accuracy or even nan. """ if np.isnan(accuracy): assert np.isnan(wright_bessel(a, b, x)) else: assert_allclose(wright_bessel(a, b, x), phi, rtol=accuracy) @pytest.mark.parametrize( 'a, b, x', list( product([0, 0.1, 0.5, 1.5, 5, 10], [1, 2], [1e-3, 1, 1.5, 5, 10]) ) ) def test_log_wright_bessel_same_as_wright_bessel(a, b, x): """Test that log_wright_bessel equals log of wright_bessel.""" assert_allclose( log_wright_bessel(a, b, x), np.log(wright_bessel(a, b, x)), rtol=1e-8, ) # Computed with, see also mp_wright_bessel from wright_bessel_data.py: # # from functools import lru_cache # import mpmath as mp # # @lru_cache(maxsize=1_000_000) # def rgamma_cached(x, dps): # with mp.workdps(dps): # return mp.rgamma(x) # # def mp_log_wright_bessel(a, b, x, dps=100, maxterms=10_000, method="d"): # """Compute log of Wright's generalized Bessel function as Series with mpmath.""" # with mp.workdps(dps): # a, b, x = mp.mpf(a), mp.mpf(b), mp.mpf(x) # res = mp.nsum(lambda k: x**k / mp.fac(k) # * rgamma_cached(a * k + b, dps=dps), # [0, mp.inf], # tol=dps, method=method, steps=[maxterms] # ) # return mp.log(res) # # Sometimes, one needs to set maxterms as high as 1_00_000 to get accurate results for # phi. # At the end of the day, we can only hope that results are correct for very large x, # e.g. by the asymptotic series, as there is no way to produce those in "exact" # arithmetic. # Note: accuracy = np.nan means log_wright_bessel returns nan. @pytest.mark.parametrize( 'a, b, x, phi, accuracy', [ (0, 0, 0, -np.inf, 1e-11), (0, 0, 1, -np.inf, 1e-11), (0, 1, 1.23, 1.23, 1e-11), (0, 1, 1e50, 1e50, 1e-11), (1e-5, 0, 700, 695.0421608273609, 1e-11), (1e-5, 0, 1e3, 995.40052566540066, 1e-11), (1e-5, 100, 1e3, 640.8197935670078, 1e-11), (1e-3, 0, 1e4, 9987.2229532297262, 1e-11), (1e-3, 0, 1e5, 99641.920687169507, 1e-11), (1e-3, 0, 1e6, 994118.55560054416, 1e-11), # maxterms=1_000_000 (1e-3, 10, 1e5, 99595.47710802537, 1e-11), (1e-3, 50, 1e5, 99401.240922855647, 1e-3), (1e-3, 100, 1e5, 99143.465191656527, np.nan), (0.5, 0, 1e5, 4074.1112442197941, 1e-11), (0.5, 0, 1e7, 87724.552120038896, 1e-11), (0.5, 100, 1e5, 3350.3928746306163, np.nan), (0.5, 100, 1e7, 86696.109975301719, 1e-11), (1, 0, 1e5, 634.06765787997266, 1e-11), (1, 0, 1e8, 20003.339639312035, 1e-11), (1.5, 0, 1e5, 197.01777556071194, 1e-11), (1.5, 0, 1e8, 3108.987414395706, 1e-11), (1.5, 100, 1e8, 2354.8915946283275, np.nan), (5, 0, 1e5, 9.8980480013203547, 1e-11), (5, 0, 1e8, 33.642337258687465, 1e-11), (5, 0, 1e12, 157.53704288117429, 1e-11), (5, 100, 1e5, -359.13419630792148, 1e-11), (5, 100, 1e12, -337.07722086995229, 1e-4), (5, 100, 1e20, 2588.2471229986845, 2e-6), (100, 0, 1e5, -347.62127990460517, 1e-11), (100, 0, 1e20, -313.08250350969449, 1e-11), (100, 100, 1e5, -359.1342053695754, 1e-11), (100, 100, 1e20, -359.1342053695754, 1e-11), ] ) def test_log_wright_bessel(a, b, x, phi, accuracy): """Test for log_wright_bessel, in particular for large x.""" if np.isnan(accuracy): assert np.isnan(log_wright_bessel(a, b, x)) else: assert_allclose(log_wright_bessel(a, b, x), phi, rtol=accuracy)