# mypy: ignore-errors """ This module provides debugging backends for TorchDynamo to help diagnose and troubleshoot compilation and execution issues. It includes: Key Debugging Backends: - eager: Simple pass-through backend that runs models in eager mode - eager_noexcept: Similar to eager but with additional exception handling - eager_debug: Adds schema validation checks for custom operators - aot_eager: Uses AOT Autograd with nop compiler for debugging - aot_eager_decomp_partition: Uses TorchInductor decompositions for debugging - torchscript: Compiles using TorchScript for debugging JIT-related issues Testing and Development Tools: - Backends for inducing specific errors (compile/runtime/accuracy) - ExplainOutput class for detailed graph compilation analysis - Utilities for cross-referencing and mode management - Tools for graph detail inspection and break reason analysis These backends are primarily used for: 1. Debugging graph breaks and compilation failures 2. Testing error handling and recovery mechanisms 3. Analyzing performance bottlenecks 4. Validating operator schemas and decompositions """ import dataclasses import functools import logging from importlib import import_module from typing import Any, Optional import torch from functorch.compile import min_cut_rematerialization_partition from torch import _guards from torch._functorch import config as functorch_config from torch._functorch.compilers import ts_compile from .common import aot_autograd from .registry import register_debug_backend as register_backend log = logging.getLogger(__name__) @register_backend def eager(gm, fake_tensor_inputs, **kwargs): if kwargs: log.warning("eager backend ignoring extra kwargs %s", kwargs) return gm.forward def make_eager_backend_with_torch_function_mode(mode): return make_eager_backend_with_torch_function_modes([mode]) def make_eager_backend_with_torch_function_modes(modes): """Used to trace HOPs (cond and while) for eager exectution, the metadata TF mode mutates vars outside of the scope of the HOP, and we can't have graph breaks in the HOP, so we need to externally run this mode and not trace it.""" from contextlib import ExitStack def fn(gm, fake_tensor_inputs, **kwargs): stack = ExitStack() for mode in modes: stack.enter_context(mode) result = gm.forward stack.close() return result return fn @register_backend def eager_noexcept(gm, fake_tensor_inputs, **kwargs): if kwargs: log.warning("eager_noexcept backend ignoring extra kwargs %s", kwargs) # This backend is intended to check that dynamo-generated GraphModules # do not cause errors. def inner(*args): try: return gm(*args) except Exception as e: raise torch._dynamo.exc.TorchDynamoException( "Unexpected exception when running generated GraphModule" ) from e return inner @register_backend def pre_dispatch_eager(gm, fake_tensor_inputs, **kwargs): if kwargs: log.warning("pre_dispatch_eager backend ignoring extra kwargs %s", kwargs) from torch.fx.experimental.proxy_tensor import make_fx def runnable_gm(*args): return torch.fx.Interpreter(gm).run(*args) pre_dispatch_gm = make_fx(runnable_gm, pre_dispatch=True)(*fake_tensor_inputs) pre_dispatch_gm.print_readable() return pre_dispatch_gm @register_backend def eager_debug(gm, fake_tensor_inputs, **kwargs): if kwargs: log.warning("eager_debug backend ignoring extra kwargs %s", kwargs) from torch._subclasses.schema_check_mode import SchemaCheckMode # We could add more debugging bits here. # Right now, this backend can be used to check for and error on # custom dispatcher ops that have incorrect schemas. def inner(*args): with SchemaCheckMode(): return torch.fx.Interpreter(gm).run(*args) return inner @register_backend(name="ts") def torchscript(gm, fake_tensor_inputs): return torch.jit.script(gm) # used boxed call to discard inputs when they are no longer needed def boxed_nop(fx_g, example_inputs): def run(args): return torch.fx.Interpreter(fx_g).boxed_run(args) run._boxed_call = True return run def boxed_nop_with_mode(fx_g, example_inputs, *, mode): def run(args): with mode: return torch.fx.Interpreter(fx_g).boxed_run(args) run._boxed_call = True return run def fake_crossref_boxed_nop(fx_g, example_inputs, ignore_op_fn=None): def run(args): with torch._subclasses.CrossRefFakeMode(ignore_op_fn): return torch.fx.Interpreter(fx_g).boxed_run(args) run._boxed_call = True return run def ignore_builtins(op: torch._ops.OpOverload) -> bool: return op.namespace in ("aten", "prims", "prim") def get_nop_func(): if not torch._functorch.config.fake_tensor_crossref: return boxed_nop elif torch._functorch.config.fake_tensor_crossref == "all": return fake_crossref_boxed_nop else: assert torch._functorch.config.fake_tensor_crossref == "custom_ops" return functools.partial(fake_crossref_boxed_nop, ignore_op_fn=ignore_builtins) # Useful for debugging purpose # aot_eager uses AOT Autograd backend with nop compiler. It is helpful in debugging. def aot_eager( gm, fake_tensor_inputs, fw_compiler=None, bw_compiler=None, **kwargs, ): return aot_autograd( fw_compiler=fw_compiler or boxed_nop, bw_compiler=bw_compiler or boxed_nop, partition_fn=min_cut_rematerialization_partition, keep_inference_input_mutations=True, )(gm, fake_tensor_inputs, **kwargs) register_backend(name="aot_eager", compiler_fn=aot_eager) aot_eager_default_partitioner = aot_autograd( fw_compiler=boxed_nop, keep_inference_input_mutations=True ) register_backend( name="aot_eager_default_partitioner", compiler_fn=aot_eager_default_partitioner ) # Uses TorchInductor AOT Autograd decomps and partitioner to isolate aot vs # inductor problems. # aot_eager_decomp_partition just replaces the inductor compiler with nop to help # isolate inductor vs aot_eager errors def aot_eager_decomp_partition(gm, fake_tensor_inputs, **kwargs): if kwargs: log.warning( "aot_eager_decomp_partition backend ignoring extra kwargs %s", kwargs ) from torch._inductor.compiler_bisector import CompilerBisector config_patches = {"unlift_effect_tokens": True} if bisect_changes := CompilerBisector.get_config_change( "aot_eager_decomp_partition" ): config_patches.update(bisect_changes) with functorch_config.patch(config_patches): return aot_autograd( # these are taken from memory_efficient_fusion() fw_compiler=get_nop_func(), bw_compiler=get_nop_func(), # NB: lambda here is to delay import of inductor decompositions=lambda: import_module( "torch._inductor.compile_fx" ).select_decomp_table(), partition_fn=functools.partial( min_cut_rematerialization_partition, compiler="inductor" ), )(gm, fake_tensor_inputs) register_backend( name="aot_eager_decomp_partition", compiler_fn=aot_eager_decomp_partition ) # aot_eager_decomp_partition_with_mode is similar as aot_eager_decomp_partition, # except that it takes a TorchDispatchMode mode and run the fw/bw in the mode def aot_eager_decomp_partition_with_mode(gm, fake_tensor_inputs, mode, **kwarg): return aot_autograd( # these are taken from memory_efficient_fusion() fw_compiler=functools.partial(boxed_nop_with_mode, mode=mode), bw_compiler=functools.partial(boxed_nop_with_mode, mode=mode), # NB: lambda here is to delay import of inductor decompositions=lambda: import_module( "torch._inductor.compile_fx" ).select_decomp_table(), partition_fn=functools.partial( min_cut_rematerialization_partition, compiler="inductor" ), )(gm, fake_tensor_inputs) register_backend( name="aot_eager_decomp_partition_with_mode", compiler_fn=aot_eager_decomp_partition_with_mode, ) def aot_eager_decomp_partition_crossref(gm, fake_tensor_inputs, **kwargs): # if the config is set, respect it, otherwise only test custom_ops. # custom_op bad metas always manifest as an error whereas aten will only sometimes. # by default, use the less noisy option config_val = ( "custom_ops" if not functorch_config.fake_tensor_crossref else functorch_config.fake_tensor_crossref ) with functorch_config.patch(fake_tensor_crossref=config_val): return aot_eager_decomp_partition(gm, fake_tensor_inputs, **kwargs) register_backend( name="aot_eager_decomp_partition_crossref", compiler_fn=aot_eager_decomp_partition_crossref, ) # AOT Autograd with torchscript backend. Default partitioner. # aot_ts uses torchscript backend. We can use this with both nnc and nvfuser # by using the relevant fuser with torch.jit.fuser(...) aot_ts = aot_autograd(fw_compiler=ts_compile) register_backend(name="aot_ts", compiler_fn=aot_ts) # These buggy backends are used for inducing bugs so that we can test # our repro extraction / minifier scripts class ReluCompileError(Exception): pass class TestingOnlyCompileError(Exception): pass @register_backend def relu_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs): for node in gm.graph.nodes: if node.target == torch.relu: raise ReluCompileError return gm @register_backend def relu_runtime_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs): for node in gm.graph.nodes: if node.target == torch.relu: node.target = torch._assert node.args = (False, "ReluRuntimeError") gm.recompile() return gm @register_backend def relu_accuracy_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs): for node in gm.graph.nodes: if node.target == torch.relu: node.target = torch.add node.args = (node.args[0], 1) gm.recompile() return gm @register_backend def non_leaf_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs): # Require at least one non-trivial thing in the graph, # see https://github.com/pytorch/pytorch/issues/102898 for node in gm.graph.nodes: if node.op == "call_function": break else: return gm for t in example_inputs: if not t.is_leaf: raise TestingOnlyCompileError return gm @dataclasses.dataclass class ExplainOutput: """ This is the output of :func:`torch._dynamo.explain()` There is no reason to create this class directly. """ graphs: list[torch.fx.GraphModule] graph_count: int graph_break_count: int break_reasons: list[ Any ] # Type is GraphCompileReason but doesn't matter for this purpose op_count: int ops_per_graph: Optional[list[torch.fx.Node]] = None out_guards: Optional[list[_guards.Guard]] = None compile_times: Optional[str] = None def __str__(self) -> str: output = f"Graph Count: {self.graph_count}\n" output += f"Graph Break Count: {self.graph_break_count}\n" output += f"Op Count: {self.op_count}\n" output += "Break Reasons:\n" for idx, break_reason in enumerate(self.break_reasons): output += f" Break Reason {idx + 1}:\n" output += f" Reason: {break_reason.reason}\n" output += " User Stack:\n" for frame_summary in break_reason.user_stack: output += f" {frame_summary}\n" if self.ops_per_graph is not None: output += "Ops per Graph:\n" for idx, ops in enumerate(self.ops_per_graph): output += f" Ops {idx + 1}:\n" for op in ops: output += f" {op}\n" if self.out_guards is not None: output += "Out Guards:\n" for i, guard in enumerate(self.out_guards): output += f" Guard {i + 1}:\n" output += f" {str(guard)}" if self.compile_times is not None: output += f"Compile Times: {self.compile_times}\n" return output def _explain_graph_detail( gm: torch.fx.GraphModule, graphs, op_count, ops_per_graph, break_reasons ): """ This function is a utility which processes a torch.fx.GraphModule and accumulates information about its ops, graph breaks, and other details. It is intended to be used by the ExplainWithBackend class and `torch._dynamo.explain()` to provide details from Dynamo's graph capture. Parameters: gm (torch.fx.GraphModule): The GraphModule to be processed. graphs (list): A list that accumulates all the GraphModules processed. op_count (int): The total count of operations in all GraphModules processed so far. ops_per_graph (list): A list that accumulates the operations of each GraphModule. break_reasons (list): A list that accumulates the reasons for breaks in each GraphModule. Returns: tuple: A tuple containing the processed GraphModule, the updated lists of graphs, operations per graph, and break reasons, and the updated operation count. """ graphs.append(gm) ops = [node.target for node in gm.graph.nodes if node.op == "call_function"] op_count += len(ops) ops_per_graph.append(ops) if gm.compile_subgraph_reason.graph_break: break_reasons.append(gm.compile_subgraph_reason) return gm, graphs, op_count, ops_per_graph, break_reasons class ExplainWithBackend: """ This class is intended to be used as a backend for `torch.compile`. It is composable with other backends. When used in this way, it accumulates information about graph breaks, ops, and other info and provides a string representation summarizing this information. Attributes: backend (str): The name of the backend to use for optimization. graphs (list): A list of the graphs captured by TorchDynamo. op_count (int): The total number of operations in all optimized graphs. break_reasons (list): A list of graph break reasons with stack traces. Example Usage: def fn(x): x = torch.sigmoid(x) return x torch._dynamo.reset() eb = ExplainWithBackend("inductor") optimized_fn = torch.compile(fn, backend=eb) result = optimized_fn(torch.randn(5)) print(eb.output()) """ def __init__(self, backend) -> None: from .registry import lookup_backend self.backend = lookup_backend(backend) self.graphs = [] self.op_count = 0 self.break_reasons = [] def __call__(self, gm: torch.fx.GraphModule, example_inputs): gm, self.graphs, self.op_count, _, self.break_reasons = _explain_graph_detail( gm, self.graphs, self.op_count, [], self.break_reasons ) return self.backend(gm, example_inputs) def output(self) -> ExplainOutput: graph_count = len(self.graphs) output = ExplainOutput( self.graphs, graph_count, graph_count - 1, self.break_reasons, self.op_count, ) return output