import dataclasses import importlib import io import pickle from abc import abstractmethod from typing import Any, Callable, NewType, Optional, TypeVar, Union from typing_extensions import override, Self import torch import torch.utils._pytree as pytree from torch._guards import TracingContext from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode, Tensor from torch._subclasses.meta_utils import ( MetaConverter, MetaTensorDesc, MetaTensorDescriber, ) from torch.fx.experimental.sym_node import SymNode from torch.fx.experimental.symbolic_shapes import ShapeEnv from torch.utils._mode_utils import no_dispatch _SymNodeT = TypeVar("_SymNodeT", torch.SymInt, torch.SymFloat) class GraphPickler(pickle.Pickler): """ GraphPickler is a Pickler which helps pickling fx graph - in particular GraphModule. """ def __init__(self, file: io.BytesIO) -> None: super().__init__(file) # This abomination is so we can pass external decoding state to the # unpickler functions. We serialize _unpickle_state as a persistent # external item and when we deserialize it we return the common state # object. self._unpickle_state = _UnpickleStateToken(object()) # This is used to describe tensors. It needs to be common across the # pickle so that duplicates and views are properly handled. self._meta_tensor_describer = MetaTensorDescriber(copy_data=False) @override def reducer_override( self, obj: object ) -> tuple[Callable[..., Any], tuple[Any, ...]]: # This function is supposed to return either NotImplemented (meaning to # do the default pickle behavior) or a pair of (unpickle callable, data # to pass to unpickle). # We could instead teach individual classes how to pickle themselves but # that has a few problems: # # 1. If we have some special needs (maybe for this use-case we don't # want to fully serialize every field) then we're adding private # details to a public interface. # # 2. If we need to have some common shared data (such as a # FakeTensorMode) which is passed to each value it's harder to # support. # These are the types that need special handling. See the individual # *PickleData classes for details on pickling that particular type. if isinstance(obj, FakeTensor): return _TensorPickleData.reduce_helper(self, obj) elif isinstance(obj, torch.fx.GraphModule): return _GraphModulePickleData.reduce_helper(self, obj) elif isinstance(obj, (torch._ops.OperatorBase, torch._ops.OpOverloadPacket)): return _OpPickleData.reduce_helper(self, obj) elif isinstance(obj, ShapeEnv): return _ShapeEnvPickleData.reduce_helper(self, obj) elif isinstance(obj, torch.SymInt): return _SymNodePickleData.reduce_helper(self, obj) elif isinstance(obj, torch._guards.TracingContext): return _TracingContextPickleData.reduce_helper(self, obj) else: # We should never get a raw Node! assert not isinstance(obj, torch.fx.Node) if reduce := _TorchNumpyPickleData.reduce_helper(self, obj): return reduce # returning `NotImplemented` causes pickle to revert to the default # behavior for this object. return NotImplemented @override def persistent_id(self, obj: object) -> Optional[str]: if obj is self._unpickle_state: return "unpickle_state" else: return None @classmethod def dumps(cls, obj: object) -> bytes: """ Pickle an object. """ with io.BytesIO() as stream: pickler = cls(stream) pickler.dump(obj) return stream.getvalue() @staticmethod def loads(data: bytes, fake_mode: FakeTensorMode) -> object: """ Unpickle an object. """ state = _UnpickleState(fake_mode) with io.BytesIO(data) as stream: unpickler = _GraphUnpickler(stream, state) return unpickler.load() class _UnpickleState: def __init__(self, fake_mode: FakeTensorMode) -> None: self.fake_mode = fake_mode self.meta_converter: MetaConverter[FakeTensor] = MetaConverter() # This token is passed when pickling to indicate that we want to use the # unpickler's _UnpickleState as a parameter in that position. _UnpickleStateToken = NewType("_UnpickleStateToken", object) class _GraphUnpickler(pickle.Unpickler): def __init__(self, stream: io.BytesIO, unpickle_state: _UnpickleState) -> None: super().__init__(stream) self._unpickle_state = unpickle_state @override def persistent_load(self, pid: object) -> object: if pid == "unpickle_state": return self._unpickle_state else: raise pickle.UnpicklingError("Invalid persistent ID") class _ShapeEnvPickleData: data: dict[str, object] @classmethod def reduce_helper( cls, pickler: GraphPickler, obj: ShapeEnv ) -> tuple[ Callable[[Self, _UnpickleState], ShapeEnv], tuple[Self, _UnpickleStateToken] ]: return cls.unpickle, (cls(obj), pickler._unpickle_state) def __init__(self, env: ShapeEnv) -> None: # In theory pickle should recognize that a given ShapeEnv was already # pickled and reuse the resulting _ShapeEnvPickleData (so two objects # pointing at the same ShapeEnv get the same ShapeEnv out). assert not env._translation_validation_enabled self.data = env.__dict__.copy() del self.data["tracked_fakes"] del self.data["fake_tensor_cache"] def unpickle(self, unpickle_state: _UnpickleState) -> ShapeEnv: # Fill in the existing ShapeEnv rather than creating a new one assert unpickle_state.fake_mode assert unpickle_state.fake_mode.shape_env for k, v in self.data.items(): setattr(unpickle_state.fake_mode.shape_env, k, v) return unpickle_state.fake_mode.shape_env class _SymNodePickleData: @classmethod def reduce_helper( cls, pickler: GraphPickler, obj: _SymNodeT, ) -> tuple[ Callable[[Self, _UnpickleState], _SymNodeT], tuple[Self, _UnpickleStateToken] ]: args = (cls(obj.node), pickler._unpickle_state) if isinstance(obj, torch.SymInt): return _SymNodePickleData.unpickle_sym_int, args else: raise NotImplementedError(f"Unhandled SymNode type {type(obj)}") def __init__(self, node: SymNode) -> None: self.expr = node._expr self.shape_env = node.shape_env self.pytype = node.pytype self.hint = node._hint def _to_sym_node(self) -> SymNode: from torch.fx.experimental.sym_node import SymNode assert self.shape_env is not None return SymNode(self.expr, self.shape_env, self.pytype, self.hint) def unpickle_sym_int(self, unpickle_state: _UnpickleState) -> torch.SymInt: return torch.SymInt(self._to_sym_node()) class _TensorPickleData: metadata: MetaTensorDesc[FakeTensor] @classmethod def reduce_helper( cls, pickler: GraphPickler, obj: FakeTensor ) -> tuple[ Callable[[Self, _UnpickleState], FakeTensor], tuple[Self, _UnpickleStateToken] ]: return cls.unpickle, ( cls(pickler._meta_tensor_describer, obj), pickler._unpickle_state, ) def __init__(self, describer: MetaTensorDescriber, t: Tensor) -> None: # THINGS TO WORRY ABOUT: # 1. Need to make sure that two tensors with the same id end up with the # same id on the other side of the wire. metadata = describer.describe_tensor(t) # view_func is fine if it's either None or a _FakeTensorViewFunc. A # custom one (which is basically a lambda) can't be serialized. assert not metadata.view_func or isinstance( metadata.view_func, torch._subclasses.meta_utils._FakeTensorViewFunc ) self.metadata = dataclasses.replace(metadata, fake_mode=None) # Some debugging/verification for k in MetaTensorDesc._UNSERIALIZABLE: if k in ("fake_mode", "view_func"): continue assert ( getattr(self.metadata, k) is None ), f"not None: {k}: {getattr(self.metadata, k)}" def unpickle(self, unpickle_state: _UnpickleState) -> FakeTensor: # TODO: make common w/ _output_from_cache_entry() in fake_tensor.py? metadata = dataclasses.replace( self.metadata, fake_mode=unpickle_state.fake_mode, ) def with_fake( make_meta_t: Callable[[], torch.Tensor], device: Union[torch.device, str] ) -> FakeTensor: with no_dispatch(): return FakeTensor( unpickle_state.fake_mode, make_meta_t(), device, ) return unpickle_state.meta_converter.meta_tensor( metadata, unpickle_state.fake_mode.shape_env, with_fake, None, None, ) class _TorchNumpyPickleData: @classmethod def reduce_helper( cls, pickler: GraphPickler, obj: object ) -> Optional[ tuple[ Callable[[Self, _UnpickleState], object], tuple[Self, _UnpickleStateToken] ] ]: if data := cls.from_object(obj): return (cls.unpickle, (data, pickler._unpickle_state)) else: return None def __init__(self, mod: str, name: str) -> None: self.mod = mod self.name = name def unpickle(self, unpickle_state: _UnpickleState) -> Callable[..., object]: np = getattr(importlib.import_module(self.mod), self.name) return torch._dynamo.variables.misc.get_np_to_tnp_map()[np] @classmethod def from_object(cls, tnp: object) -> Optional[Self]: if not callable(tnp): return None tnp_to_np = torch._dynamo.variables.misc.get_tnp_to_np_map() try: if not (np := tnp_to_np.get(tnp)): return None except TypeError: return None if not (mod := getattr(np, "__module__", None)): mod = "numpy" if not (name := getattr(np, "__name__", None)): return None assert np == getattr(importlib.import_module(mod), name) return cls(mod, name) class _GraphModulePickleData: @classmethod def reduce_helper( cls, pickler: GraphPickler, obj: torch.fx.GraphModule ) -> tuple[ Callable[[Self, _UnpickleState], torch.fx.GraphModule], tuple[Self, _UnpickleStateToken], ]: return cls.unpickle, ( cls(obj), pickler._unpickle_state, ) def __init__(self, gm: torch.fx.GraphModule) -> None: # Need to do this to ensure the code is created for later pickling. if isinstance(gm, torch.fx._lazy_graph_module._LazyGraphModule): _python_code = gm._real_recompile() else: _python_code = gm.recompile() self.gm_dict = gm.__dict__.copy() del self.gm_dict["_graph"] self.graph = _GraphPickleData(gm._graph) def unpickle(self, unpickle_state: _UnpickleState) -> torch.fx.GraphModule: gm = torch.fx.GraphModule.__new__(torch.fx.GraphModule) gm.__dict__ = self.gm_dict gm._graph = self.graph.unpickle(gm, unpickle_state) return gm class _NodePickleData: def __init__( self, node: torch.fx.Node, mapping: dict[torch.fx.Node, "_NodePickleData"] ) -> None: self.args = pytree.tree_map_only(torch.fx.Node, lambda n: mapping[n], node.args) self.kwargs = pytree.tree_map_only( torch.fx.Node, lambda n: mapping[n], node.kwargs ) # -- self.graph = node.graph self.name = node.name self.op = node.op self.target = _OpPickleData.pickle(node.target) # self.input_nodes = node._input_nodes # self.users = node.users self.type = node.type # self.sort_key = node._sort_key # self.repr_fn = node._repr_fn # self.meta = node.meta self.meta = node.meta def unpickle( self, graph: torch.fx.Graph, mapping: dict["_NodePickleData", torch.fx.Node], unpickle_state: _UnpickleState, ) -> torch.fx.Node: args = pytree.tree_map_only(_NodePickleData, lambda n: mapping[n], self.args) kwargs = pytree.tree_map_only( _NodePickleData, lambda n: mapping[n], self.kwargs ) target = self.target.unpickle(unpickle_state) assert callable(target) or isinstance(target, str) node = graph.create_node(self.op, target, args, kwargs, self.name, self.type) node.meta = self.meta return node class _OpPickleData: @classmethod def reduce_helper( cls, pickler: GraphPickler, op: object ) -> tuple[Callable[[_UnpickleState], object], tuple[_UnpickleStateToken]]: result = cls.pickle(op) return (result.unpickle, (pickler._unpickle_state,)) @classmethod def pickle(cls, op: object) -> "_OpPickleData": if isinstance(op, str): return _OpStrPickleData(op) name = torch.fx.Node._pretty_print_target(op) if isinstance(op, torch._ops.OpOverload): return cls._pickle_op(name, _OpOverloadPickleData) elif isinstance(op, torch._ops.OpOverloadPacket): return cls._pickle_op(name, _OpOverloadPacketPickleData) elif name.startswith(("builtins.", "math.", "torch.")): root, detail = name.split(".", 1) return _OpBuiltinPickleData(root, detail) elif name.startswith("operator."): _, detail = name.split(".", 1) return _OpOperatorPickleData(detail) else: # TODO: raise a BypassFxGraphCache so we will just bypass this one... raise NotImplementedError(f"TARGET: {type(op)} {op} {name}") @staticmethod def _pickle_op( name: str, datacls: Union[ type["_OpOverloadPickleData"], type["_OpOverloadPacketPickleData"] ], ) -> "_OpPickleData": if not name.startswith("torch.ops.aten"): # TODO: What's the full list? from torch._inductor.codecache import BypassFxGraphCache raise BypassFxGraphCache(f"Unable to pickle non-standard op: {name}") return datacls(name) @abstractmethod def unpickle(self, unpickle_state: _UnpickleState) -> object: pass @classmethod def _lookup_global_by_name(cls, name: str) -> object: """ Like `globals()[name]` but supports dotted names. """ if "." in name: mod, rest = name.split(".", 1) root = globals()[mod] return cls._getattr_by_name(root, rest) else: return globals()[name] @staticmethod def _getattr_by_name(root: object, name: str) -> object: """ Like `getattr(root, name)` but supports dotted names. """ while "." in name: mod, name = name.split(".", 1) root = getattr(root, mod) return getattr(root, name) class _OpStrPickleData(_OpPickleData): def __init__(self, name: str) -> None: self.name = name def unpickle(self, unpickle_state: _UnpickleState) -> str: return self.name class _OpOverloadPickleData(_OpPickleData): def __init__(self, name: str) -> None: self.name = name def unpickle(self, unpickle_state: _UnpickleState) -> torch._ops.OpOverload: obj = self._lookup_global_by_name(self.name) assert isinstance(obj, torch._ops.OpOverload) return obj class _OpOverloadPacketPickleData(_OpPickleData): def __init__(self, name: str) -> None: self.name = name def unpickle(self, unpickle_state: _UnpickleState) -> torch._ops.OpOverloadPacket: obj = self._lookup_global_by_name(self.name) assert isinstance(obj, torch._ops.OpOverloadPacket) return obj class _OpBuiltinPickleData(_OpPickleData): def __init__(self, root: str, name: str) -> None: self.root = root self.name = name def unpickle(self, unpickle_state: _UnpickleState) -> object: if self.root == "builtins": return __builtins__.get(self.name) # type: ignore[attr-defined] elif self.root == "math": import math return self._getattr_by_name(math, self.name) elif self.root == "torch": return self._getattr_by_name(torch, self.name) else: raise NotImplementedError class _OpOperatorPickleData(_OpPickleData): def __init__(self, name: str) -> None: self.name = name def unpickle(self, unpickle_state: _UnpickleState) -> object: import operator return self._getattr_by_name(operator, self.name) class _GraphPickleData: def __init__(self, graph: torch.fx.Graph) -> None: self.tracer_cls = graph._tracer_cls self.tracer_extras = graph._tracer_extras nodes: dict[torch.fx.Node, _NodePickleData] = {} for node in graph.nodes: nodes[node] = _NodePickleData(node, nodes) self.nodes = tuple(nodes.values()) # Unpickled variables: # self._used_names = graph._used_names # -- self._insert = self._root.prepend # self._len = graph._len # self._graph_namespace = graph._graph_namespace # self._owning_module = graph._owning_module # self._codegen = graph._codegen # self._co_fields: Dict[str, Any] = graph._co_fields # -- self._find_nodes_lookup_table = _FindNodesLookupTable() def unpickle( self, gm: torch.fx.GraphModule, unpickle_state: _UnpickleState ) -> torch.fx.Graph: graph = torch.fx.Graph(gm, self.tracer_cls, self.tracer_extras) nodes: dict[_NodePickleData, torch.fx.Node] = {} for nd in self.nodes: nodes[nd] = nd.unpickle(graph, nodes, unpickle_state) return graph class _TracingContextPickleData: @classmethod def reduce_helper( cls, pickler: GraphPickler, obj: torch._guards.TracingContext ) -> tuple[ Callable[[Self, _UnpickleState], torch._guards.TracingContext], tuple[Self, _UnpickleStateToken], ]: return ( cls.unpickle, ( cls(obj), pickler._unpickle_state, ), ) def __init__(self, context: TracingContext) -> None: # TODO: Do we really need all of this? self.module_context = context.module_context self.frame_summary_stack = context.frame_summary_stack self.loc_in_frame = context.loc_in_frame self.aot_graph_name = context.aot_graph_name self.params_flat = context.params_flat self.params_flat_unwrap_subclasses = context.params_flat_unwrap_subclasses self.params_unwrapped_to_flat_index = context.params_unwrapped_to_flat_index self.output_strides = context.output_strides self.force_unspec_int_unbacked_size_like = ( context.force_unspec_int_unbacked_size_like ) # Not saved (because it's difficult and maybe not needed?): # self.fw_metadata = context.fw_metadata # self.guards_context = None # self.global_context = None # self.fake_mode = None # self.fakify_first_call = None # self.hop_dispatch_set_cache = None # self.tensor_to_context = context.tensor_to_context def unpickle(self, unpickle_state: _UnpickleState) -> TracingContext: context = TracingContext(unpickle_state.fake_mode) context.module_context = self.module_context context.frame_summary_stack = self.frame_summary_stack context.loc_in_frame = self.loc_in_frame context.aot_graph_name = self.aot_graph_name context.params_flat = self.params_flat context.params_flat_unwrap_subclasses = self.params_flat_unwrap_subclasses context.params_unwrapped_to_flat_index = self.params_unwrapped_to_flat_index context.output_strides = self.output_strides context.force_unspec_int_unbacked_size_like = ( self.force_unspec_int_unbacked_size_like ) return context