# coding=utf-8 # Copyright 2024 Kyutai, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Mimi model.""" import math from dataclasses import dataclass from typing import Optional, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, StaticCache from ...masking_utils import create_causal_mask from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import PreTrainedModel from ...utils import ModelOutput, auto_docstring, logging from .configuration_mimi import MimiConfig if is_flash_attn_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) @dataclass @auto_docstring class MimiOutput(ModelOutput): r""" audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. audio_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Decoded audio values, obtained using the decoder part of Mimi. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). """ audio_codes: Optional[torch.LongTensor] = None audio_values: Optional[torch.FloatTensor] = None encoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None decoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None class MimiConv1dPaddingCache: """ Padding cache for MimiConv1d causal convolutions in order to support streaming via cache padding. See: https://arxiv.org/pdf/2005.06720 & https://arxiv.org/pdf/2204.07064 A padding cache is a list of cached partial hidden states for each convolution layer. Hidden states are cached from the previous call to the MimiConv1d forward pass, given the padding size. """ def __init__( self, num_layers: int, per_layer_padding: list[int], per_layer_padding_mode: list[str], per_layer_in_channels: list[int], ): # ensure correct number of layers for each arg from_args_num_layers = {len(per_layer_padding), len(per_layer_padding_mode), len(per_layer_in_channels)} if len(from_args_num_layers) != 1 or from_args_num_layers.pop() != num_layers: raise ValueError( f"Expected `num_layers` ({num_layers}) values in `per_layer_padding`, `per_layer_padding_mode` and `per_layer_in_channels`" ) elif not all(mode in ["constant", "replicate"] for mode in per_layer_padding_mode): raise NotImplementedError( "`padding_cache` is not supported for convolutions using other than `constant` or `replicate` padding mode" ) self.per_layer_padding = per_layer_padding self.per_layer_padding_mode = per_layer_padding_mode self.per_layer_in_channels = per_layer_in_channels self.per_layer_is_init = [True] * num_layers self.padding_cache = [None] * num_layers def update(self, hidden_states: torch.Tensor, layer_idx: int): """ Updates the padding cache with the new padding states for the layer `layer_idx` and returns the current cache. Parameters: hidden_states (`torch.Tensor`): The hidden states to be partially cached. layer_idx (`int`): The index of the layer to cache the states for. Returns: `torch.Tensor` or `None`, the current padding cache. """ batch_size, dtype, device = hidden_states.shape[0], hidden_states.dtype, hidden_states.device padding = self.per_layer_padding[layer_idx] padding_mode = self.per_layer_padding_mode[layer_idx] in_channels = self.per_layer_in_channels[layer_idx] if self.padding_cache[layer_idx] is None: if padding_mode == "constant": current_cache = torch.zeros( batch_size, in_channels, padding, device=device, dtype=dtype, ) elif padding_mode == "replicate": current_cache = ( torch.ones( batch_size, in_channels, padding, device=device, dtype=dtype, ) * hidden_states[..., :1] ) else: current_cache = self.padding_cache[layer_idx] # update the cache if padding > 0: padding_states = hidden_states[:, :, -padding:] else: padding_states = torch.empty(batch_size, in_channels, padding, dtype=dtype, device=device) self.padding_cache[layer_idx] = padding_states return current_cache @dataclass @auto_docstring class MimiEncoderOutput(ModelOutput): r""" audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). padding_cache (`MimiConv1dPaddingCache`, *optional*): Padding cache for MimiConv1d causal convolutions in order to support streaming via cache padding. """ audio_codes: Optional[torch.LongTensor] = None encoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None padding_cache: Optional[MimiConv1dPaddingCache] = None @dataclass @auto_docstring class MimiDecoderOutput(ModelOutput): r""" audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*): Decoded audio values, obtained using the decoder part of Mimi. decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). """ audio_values: Optional[torch.FloatTensor] = None decoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None class MimiConv1d(nn.Module): """Conv1d with asymmetric or causal padding and normalization.""" def __init__( self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, dilation: int = 1, groups: int = 1, pad_mode: Optional[str] = None, bias: bool = True, layer_idx: Optional[int] = None, ): super().__init__() self.causal = config.use_causal_conv self.pad_mode = config.pad_mode if pad_mode is None else pad_mode self.layer_idx = layer_idx self.in_channels = in_channels # warn user on unusual setup between dilation and stride if stride > 1 and dilation > 1: logger.warning( "MimiConv1d has been initialized with stride > 1 and dilation > 1" f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})." ) self.conv = nn.Conv1d( in_channels, out_channels, kernel_size, stride, dilation=dilation, groups=groups, bias=bias ) kernel_size = self.conv.kernel_size[0] stride = torch.tensor(self.conv.stride[0], dtype=torch.int64) dilation = self.conv.dilation[0] # Effective kernel size with dilations. kernel_size = torch.tensor((kernel_size - 1) * dilation + 1, dtype=torch.int64) self.register_buffer("stride", stride, persistent=False) self.register_buffer("kernel_size", kernel_size, persistent=False) self.register_buffer("padding_total", kernel_size - stride, persistent=False) # Asymmetric padding required for odd strides self.padding_right = self.padding_total // 2 self.padding_left = self.padding_total - self.padding_right def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.conv) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv) # Copied from transformers.models.encodec.modeling_encodec.EncodecConv1d._get_extra_padding_for_conv1d def _get_extra_padding_for_conv1d( self, hidden_states: torch.Tensor, ) -> torch.Tensor: """See `pad_for_conv1d`.""" length = hidden_states.shape[-1] n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1 n_frames = torch.ceil(n_frames).to(torch.int64) - 1 ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total return ideal_length - length @staticmethod # Copied from transformers.models.encodec.modeling_encodec.EncodecConv1d._pad1d def _pad1d(hidden_states: torch.Tensor, paddings: tuple[int, int], mode: str = "zero", value: float = 0.0): """Tiny wrapper around torch.nn.functional.pad, just to allow for reflect padding on small input. If this is the case, we insert extra 0 padding to the right before the reflection happens. """ length = hidden_states.shape[-1] padding_left, padding_right = paddings if not mode == "reflect": return nn.functional.pad(hidden_states, paddings, mode, value) max_pad = max(padding_left, padding_right) extra_pad = 0 if length <= max_pad: extra_pad = max_pad - length + 1 hidden_states = nn.functional.pad(hidden_states, (0, extra_pad)) padded = nn.functional.pad(hidden_states, paddings, mode, value) end = padded.shape[-1] - extra_pad return padded[..., :end] def _get_output_length(self, input_length: torch.LongTensor) -> torch.LongTensor: """ Return the length of the output of the MimiConv1d. """ # padding size n_frames = (input_length - self.kernel_size + self.padding_total) / self.stride + 1 n_frames = torch.ceil(n_frames).to(torch.int64) - 1 ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total extra_padding = ideal_length - input_length if self.causal: padding_left = self.padding_total padding_right = extra_padding else: padding_left = self.padding_left padding_right = self.padding_right + extra_padding # padding input_length = input_length + padding_left + padding_right # conv output_lenght = ( input_length + 2 * self.conv.padding[0] - self.conv.dilation[0] * (self.conv.kernel_size[0] - 1) - 1 ) // self.conv.stride[0] + 1 return output_lenght def forward(self, hidden_states, padding_cache=None): extra_padding = self._get_extra_padding_for_conv1d(hidden_states) if not self.causal and padding_cache is not None: raise ValueError("`padding_cache` is not supported for non-causal convolutions.") if self.causal and padding_cache is not None: layer_padding_cache = padding_cache.update(hidden_states, self.layer_idx) hidden_states = torch.cat([layer_padding_cache, hidden_states], dim=2) elif self.causal: # Left padding for causal hidden_states = self._pad1d(hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode) else: hidden_states = self._pad1d( hidden_states, (self.padding_left, self.padding_right + extra_padding), mode=self.pad_mode ) hidden_states = self.conv(hidden_states) return hidden_states class MimiConvTranspose1d(nn.Module): """ConvTranspose1d with asymmetric or causal padding and normalization.""" def __init__( self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias=True, ): super().__init__() self.causal = config.use_causal_conv self.trim_right_ratio = config.trim_right_ratio self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, groups=groups, bias=bias) if not (self.causal or self.trim_right_ratio == 1.0): raise ValueError("`trim_right_ratio` != 1.0 only makes sense for causal convolutions") kernel_size = self.conv.kernel_size[0] stride = self.conv.stride[0] padding_total = kernel_size - stride # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be # removed at the very end, when keeping only the right length for the output, # as removing it here would require also passing the length at the matching layer # in the encoder. if self.causal: # Trim the padding on the right according to the specified ratio # if trim_right_ratio = 1.0, trim everything from right self.padding_right = math.ceil(padding_total * self.trim_right_ratio) else: # Asymmetric padding required for odd strides self.padding_right = padding_total // 2 self.padding_left = padding_total - self.padding_right def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.conv) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) # unpad end = hidden_states.shape[-1] - self.padding_right hidden_states = hidden_states[..., self.padding_left : end] return hidden_states class MimiResnetBlock(nn.Module): """ Residual block from SEANet model as used by Mimi. """ def __init__(self, config: MimiConfig, dim: int, dilations: list[int]): super().__init__() kernel_sizes = (config.residual_kernel_size, 1) if len(kernel_sizes) != len(dilations): raise ValueError("Number of kernel sizes should match number of dilations") hidden = dim // config.compress block = [] for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): in_chs = dim if i == 0 else hidden out_chs = dim if i == len(kernel_sizes) - 1 else hidden block += [nn.ELU()] block += [MimiConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)] self.block = nn.ModuleList(block) if config.use_conv_shortcut: self.shortcut = MimiConv1d(config, dim, dim, kernel_size=1) else: self.shortcut = nn.Identity() def forward(self, hidden_states, padding_cache=None): residual = hidden_states for layer in self.block: if isinstance(layer, MimiConv1d): hidden_states = layer(hidden_states, padding_cache=padding_cache) else: hidden_states = layer(hidden_states) if isinstance(self.shortcut, MimiConv1d): residual = self.shortcut(residual, padding_cache=padding_cache) else: residual = self.shortcut(residual) return residual + hidden_states class MimiEncoder(nn.Module): """SEANet encoder as used by Mimi.""" def __init__(self, config: MimiConfig): super().__init__() model = [MimiConv1d(config, config.audio_channels, config.num_filters, config.kernel_size)] scaling = 1 # keep track of MimiConv1d submodule layer names for easy encoded length computation mimiconv1d_layer_names = ["layers.0"] # Downsample to raw audio scale for ratio in reversed(config.upsampling_ratios): current_scale = scaling * config.num_filters # Add residual layers for j in range(config.num_residual_layers): mimiconv1d_layer_names.extend([f"layers.{len(model)}.block.1", f"layers.{len(model)}.block.3"]) model += [MimiResnetBlock(config, current_scale, [config.dilation_growth_rate**j, 1])] # Add downsampling layers model += [nn.ELU()] mimiconv1d_layer_names.append(f"layers.{len(model)}") model += [MimiConv1d(config, current_scale, current_scale * 2, kernel_size=ratio * 2, stride=ratio)] scaling *= 2 model += [nn.ELU()] mimiconv1d_layer_names.append(f"layers.{len(model)}") model += [MimiConv1d(config, scaling * config.num_filters, config.hidden_size, config.last_kernel_size)] self.layers = nn.ModuleList(model) self._mimiconv1d_layer_names = mimiconv1d_layer_names # initialize layer_idx for MimiConv1d submodules, necessary for padding_cache for layer_idx, layername in enumerate(self._mimiconv1d_layer_names): conv_layer = self.get_submodule(layername) setattr(conv_layer, "layer_idx", layer_idx) def forward(self, hidden_states, padding_cache=None): for layer in self.layers: if isinstance(layer, (MimiConv1d, MimiResnetBlock)): hidden_states = layer(hidden_states, padding_cache=padding_cache) else: hidden_states = layer(hidden_states) return hidden_states class MimiLayerScale(nn.Module): """Layer scale from [Touvron et al 2021] (https://huggingface.co/papers/2103.17239). This rescales diagonally the residual outputs close to 0, with a learnt scale. """ def __init__(self, config): super().__init__() channels = config.hidden_size initial_scale = config.layer_scale_initial_scale self.scale = nn.Parameter(torch.full((channels,), initial_scale, requires_grad=True)) def forward(self, x: torch.Tensor): return self.scale * x # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Mimi class MimiRotaryEmbedding(nn.Module): def __init__(self, config: MimiConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MimiMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) # Copied from transformers.models.clip.modeling_clip.CLIPMLP.forward def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # copied from transformers.models.gemma.modeling_gemma.GemmaAttention with Gemma->Mimi # no longer copied after attention refactors class MimiAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: MimiConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.head_dim self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.scaling = 1 / math.sqrt(config.head_dim) if self.hidden_size % self.num_heads != 0: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) self.rotary_emb = MimiRotaryEmbedding(config) self.sliding_window = config.sliding_window # Ignore copy def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # NO LONGER EXIST Copied from transformers.models.gemma.modeling_gemma.GemmaFlashAttention2 with Gemma->Mimi # TODO cyril: modular class MimiFlashAttention2(MimiAttention): """ Mimi flash attention module. This module inherits from `MimiAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: if isinstance(past_key_value, StaticCache): raise ValueError( "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" ) output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (MimiRMSNorm handles it correctly) input_dtype = query_states.dtype device_type = query_states.device.type if query_states.device.type != "mps" else "cpu" if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = ( torch.get_autocast_dtype(device_type) if hasattr(torch, "get_autocast_dtype") else torch.get_autocast_gpu_dtype() ) # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, sliding_window=getattr(self, "sliding_window", None), is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # NO LONGER EXIST Copied from transformers.models.gemma.modeling_gemma.GemmaSdpaAttention with Gemma->Mimi # TODO cyril: modular class MimiSdpaAttention(MimiAttention): """ Mimi attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `MimiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from MimiAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "MimiModel is using MimiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) return attn_output, None MIMI_ATTENTION_CLASSES = { "eager": MimiAttention, "flash_attention_2": MimiFlashAttention2, "sdpa": MimiSdpaAttention, } class MimiTransformerLayer(GradientCheckpointingLayer): def __init__(self, config: MimiConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MIMI_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = MimiMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) self.self_attn_layer_scale = MimiLayerScale(config) self.mlp_layer_scale = MimiLayerScale(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + self.self_attn_layer_scale(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.mlp_layer_scale(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class MimiTransformerModel(nn.Module): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MimiTransformerLayer`] Args: config: MimiConfig """ def __init__(self, config: MimiConfig): super().__init__() self.layers = nn.ModuleList( [MimiTransformerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.gradient_checkpointing = False self.config = config def forward( self, hidden_states: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[tuple, BaseModelOutputWithPast]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Embedded representation that will be contextualized by the model attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://huggingface.co/papers/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=hidden_states.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=hidden_states, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) class MimiDecoder(nn.Module): """SEANet decoder as used by Mimi.""" def __init__(self, config: MimiConfig): super().__init__() scaling = int(2 ** len(config.upsampling_ratios)) model = [MimiConv1d(config, config.hidden_size, scaling * config.num_filters, config.kernel_size)] # Upsample to raw audio scale for ratio in config.upsampling_ratios: current_scale = scaling * config.num_filters # Add upsampling layers model += [nn.ELU()] model += [ MimiConvTranspose1d(config, current_scale, current_scale // 2, kernel_size=ratio * 2, stride=ratio) ] # Add residual layers for j in range(config.num_residual_layers): model += [MimiResnetBlock(config, current_scale // 2, (config.dilation_growth_rate**j, 1))] scaling //= 2 # Add final layers model += [nn.ELU()] model += [MimiConv1d(config, config.num_filters, config.audio_channels, config.last_kernel_size)] self.layers = nn.ModuleList(model) # Copied from transformers.models.encodec.modeling_encodec.EncodecDecoder.forward def forward(self, hidden_states): for layer in self.layers: hidden_states = layer(hidden_states) return hidden_states class MimiEuclideanCodebook(nn.Module): """Codebook with Euclidean distance.""" def __init__(self, config: MimiConfig, epsilon: float = 1e-5): super().__init__() embed = torch.zeros(config.codebook_size, config.codebook_dim) self.codebook_size = config.codebook_size self.register_buffer("initialized", torch.tensor([True], dtype=torch.float32)) self.register_buffer("cluster_usage", torch.ones(config.codebook_size)) self.register_buffer("embed_sum", embed) self._embed = None self.epsilon = epsilon @property def embed(self) -> torch.Tensor: if self._embed is None: self._embed = self.embed_sum / self.cluster_usage.clamp(min=self.epsilon)[:, None] return self._embed def quantize(self, hidden_states): # Projects each vector in `hidden_states` over the nearest centroid and return its index. # `hidden_states` should be `[N, D]` with `N` the number of input vectors and `D` the dimension. dists = torch.cdist(hidden_states[None].float(), self.embed[None].float(), p=2)[0] embed_ind = dists.argmin(dim=-1) return embed_ind # Copied from transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.encode def encode(self, hidden_states): shape = hidden_states.shape # pre-process hidden_states = hidden_states.reshape((-1, shape[-1])) # quantize embed_ind = self.quantize(hidden_states) # post-process embed_ind = embed_ind.view(*shape[:-1]) return embed_ind # Copied from transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.decode def decode(self, embed_ind): quantize = nn.functional.embedding(embed_ind, self.embed) return quantize # Copied from transformers.models.encodec.modeling_encodec.EncodecVectorQuantization with Encodec->Mimi class MimiVectorQuantization(nn.Module): """ Vector quantization implementation. Currently supports only euclidean distance. """ def __init__(self, config: MimiConfig): super().__init__() self.codebook = MimiEuclideanCodebook(config) def encode(self, hidden_states): hidden_states = hidden_states.permute(0, 2, 1) embed_in = self.codebook.encode(hidden_states) return embed_in def decode(self, embed_ind): quantize = self.codebook.decode(embed_ind) quantize = quantize.permute(0, 2, 1) return quantize class MimiResidualVectorQuantizer(nn.Module): """Residual Vector Quantizer.""" def __init__(self, config: MimiConfig, num_quantizers: Optional[int] = None): super().__init__() self.codebook_size = config.codebook_size self.frame_rate = config.frame_rate self.num_quantizers = num_quantizers if num_quantizers is not None else config.num_quantizers self.layers = nn.ModuleList([MimiVectorQuantization(config) for _ in range(self.num_quantizers)]) self.input_proj = None self.output_proj = None if config.vector_quantization_hidden_dimension != config.hidden_size: self.input_proj = torch.nn.Conv1d( config.hidden_size, config.vector_quantization_hidden_dimension, 1, bias=False ) self.output_proj = torch.nn.Conv1d( config.vector_quantization_hidden_dimension, config.hidden_size, 1, bias=False ) def encode(self, embeddings: torch.Tensor, num_quantizers: Optional[int] = None) -> torch.Tensor: """ Encode a given input tensor with the specified frame rate at the given number of quantizers / codebooks. The RVQ encode method sets the appropriate number of quantizers to use and returns indices for each quantizer. """ if self.input_proj is not None: embeddings = self.input_proj(embeddings) num_quantizers = num_quantizers if num_quantizers is not None else self.num_quantizers residual = embeddings all_indices = [] for layer in self.layers[:num_quantizers]: indices = layer.encode(residual) quantized = layer.decode(indices) residual = residual - quantized all_indices.append(indices) out_indices = torch.stack(all_indices) return out_indices def decode(self, codes: torch.Tensor) -> torch.Tensor: """Decode the given codes of shape [B, K, T] to the quantized representation.""" quantized_out = torch.tensor(0.0, device=codes.device) codes = codes.transpose(0, 1) for i, indices in enumerate(codes): layer = self.layers[i] quantized = layer.decode(indices) quantized_out = quantized_out + quantized if self.output_proj is not None: quantized_out = self.output_proj(quantized_out) return quantized_out class MimiSplitResidualVectorQuantizer(nn.Module): """Split Residual Vector Quantizer.""" def __init__(self, config: MimiConfig): super().__init__() self.codebook_size = config.codebook_size self.frame_rate = config.frame_rate self.max_num_quantizers = config.num_quantizers self.num_semantic_quantizers = config.num_semantic_quantizers self.num_acoustic_quantizers = config.num_quantizers - config.num_semantic_quantizers self.semantic_residual_vector_quantizer = MimiResidualVectorQuantizer(config, self.num_semantic_quantizers) self.acoustic_residual_vector_quantizer = MimiResidualVectorQuantizer(config, self.num_acoustic_quantizers) def encode(self, embeddings: torch.Tensor, num_quantizers: Optional[float] = None) -> torch.Tensor: """ Encode a given input tensor with the specified frame rate at the given number of quantizers / codebooks. The RVQ encode method sets the appropriate number of quantizers to use and returns indices for each quantizer. """ num_quantizers = self.max_num_quantizers if num_quantizers is None else num_quantizers if num_quantizers > self.max_num_quantizers: raise ValueError( f"The number of quantizers (i.e codebooks) asked should be lower than the total number of quantizers {self.max_num_quantizers}, but is currently {num_quantizers}." ) if num_quantizers < self.num_semantic_quantizers: raise ValueError( f"The number of quantizers (i.e codebooks) asked should be higher than the number of semantic quantizers {self.num_semantic_quantizers}, but is currently {num_quantizers}." ) # codes is [K, B, T], with T frames, K nb of codebooks. codes = self.semantic_residual_vector_quantizer.encode(embeddings) if num_quantizers > self.num_semantic_quantizers: acoustic_codes = self.acoustic_residual_vector_quantizer.encode( embeddings, num_quantizers=num_quantizers - self.num_semantic_quantizers ) codes = torch.cat([codes, acoustic_codes], dim=0) return codes def decode(self, codes: torch.Tensor) -> torch.Tensor: """Decode the given codes to the quantized representation.""" # The first num_semantic_quantizers codebooks are decoded using the semantic RVQ quantized_out = self.semantic_residual_vector_quantizer.decode(codes[:, : self.num_semantic_quantizers]) # The rest of the codebooks are decoded using the acoustic RVQ if codes.shape[1] > self.num_semantic_quantizers: quantized_out += self.acoustic_residual_vector_quantizer.decode(codes[:, self.num_semantic_quantizers :]) return quantized_out @auto_docstring class MimiPreTrainedModel(PreTrainedModel): config: MimiConfig base_model_prefix = "mimi" main_input_name = "input_values" supports_gradient_checkpointing = True _no_split_modules = ["MimiDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True _can_compile_fullgraph = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, (nn.Conv1d, nn.ConvTranspose1d)): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) elif isinstance(module, MimiLayerScale): module.scale.data.fill_(self.config.layer_scale_initial_scale) @auto_docstring( custom_intro=""" The Mimi neural audio codec model. """ ) class MimiModel(MimiPreTrainedModel): def __init__(self, config: MimiConfig): super().__init__(config) self.config = config self.encoder = MimiEncoder(config) self.encoder_transformer = MimiTransformerModel(config) self.downsample = None self.upsample = None if config.frame_rate != config.encodec_frame_rate: self.downsample = MimiConv1d( config, config.hidden_size, config.hidden_size, kernel_size=2 * int(config.encodec_frame_rate / config.frame_rate), stride=2, bias=False, pad_mode="replicate", layer_idx=len(self.encoder._mimiconv1d_layer_names), ) self.upsample = MimiConvTranspose1d( config, config.hidden_size, config.hidden_size, kernel_size=2 * int(config.encodec_frame_rate / config.frame_rate), stride=2, bias=False, groups=config.upsample_groups, ) self.decoder_transformer = MimiTransformerModel(config) self.decoder = MimiDecoder(config) self.quantizer = MimiSplitResidualVectorQuantizer(config) self.bits_per_codebook = int(math.log2(self.config.codebook_size)) if 2**self.bits_per_codebook != self.config.codebook_size: raise ValueError("The codebook_size must be a power of 2.") # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _encode_frame( self, input_values: torch.Tensor, num_quantizers: int, padding_mask: int, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, padding_cache: Optional[MimiConv1dPaddingCache] = None, return_dict: Optional[bool] = None, ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: """ Encodes the given input using the underlying VQVAE. The padding mask is required to compute the correct scale. """ # TODO: @eustlb, let's make the encoder support padding_mask so that batched inputs are supported. embeddings = self.encoder(input_values, padding_cache=padding_cache) # TODO: @eustlb, convert the padding mask to attention mask. encoder_outputs = self.encoder_transformer( embeddings.transpose(1, 2), past_key_values=past_key_values, return_dict=return_dict ) if return_dict: past_key_values = encoder_outputs.get("past_key_values") elif len(encoder_outputs) > 1: past_key_values = encoder_outputs[1] embeddings = encoder_outputs[0].transpose(1, 2) embeddings = self.downsample(embeddings, padding_cache=padding_cache) codes = self.quantizer.encode(embeddings, num_quantizers) codes = codes.transpose(0, 1) return codes, past_key_values, padding_cache def get_encoded_length(self, input_length: torch.LongTensor) -> torch.LongTensor: """ Return the number of frames of the encoded audio waveform. """ output_length = input_length # encoder for layer_name in self.encoder._mimiconv1d_layer_names: output_length = self.encoder.get_submodule(layer_name)._get_output_length(output_length) # downsample output_length = self.downsample._get_output_length(output_length) return output_length def get_audio_codes_mask(self, padding_mask: torch.Tensor, padding_side: str = "right"): """ Get the mask for the audio codes from the original padding mask. """ encoded_lengths = self.get_encoded_length(padding_mask.sum(dim=-1)) audio_codes_mask = torch.arange(encoded_lengths.max(), device=encoded_lengths.device).expand( len(encoded_lengths), -1 ) audio_codes_mask = audio_codes_mask < encoded_lengths.unsqueeze(1) audio_codes_mask = audio_codes_mask.to(padding_mask.device) if padding_side == "right": return audio_codes_mask else: return audio_codes_mask.flip(dims=[-1]) def encode( self, input_values: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, num_quantizers: Optional[float] = None, encoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, padding_cache: Optional[MimiConv1dPaddingCache] = None, use_streaming: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.Tensor, Optional[torch.Tensor]], MimiEncoderOutput]: """ Encodes the input audio waveform into discrete codes. Args: input_values (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Float values of the input audio waveform. padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked*. num_quantizers (`int`, *optional*): Number of quantizers (i.e codebooks) to use. By default, all quantizers are used. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: `codebook` of shape `[batch_size, num_codebooks, frames]`, the discrete encoded codes for the input audio waveform. """ return_dict = return_dict if return_dict is not None else self.config.return_dict use_streaming = use_streaming if use_streaming is not None else self.config.use_streaming num_quantizers = self.config.num_quantizers if num_quantizers is None else num_quantizers if num_quantizers > self.config.num_quantizers: raise ValueError( f"The number of quantizers (i.e codebooks) asked should be lower than the total number of quantizers {self.config.num_quantizers}, but is currently {num_quantizers}." ) _, channels, input_length = input_values.shape if channels < 1 or channels > 2: raise ValueError(f"Number of audio channels must be 1 or 2, but got {channels}") if padding_mask is None: padding_mask = torch.ones_like(input_values).bool() if use_streaming and padding_cache is None: per_layer_padding, per_layer_padding_mode, per_layer_in_channels = [], [], [] for layer_name in self.encoder._mimiconv1d_layer_names: per_layer_padding.append(self.encoder.get_submodule(layer_name).padding_total) per_layer_padding_mode.append(self.encoder.get_submodule(layer_name).pad_mode) per_layer_in_channels.append(self.encoder.get_submodule(layer_name).in_channels) # downsample layer per_layer_padding.append(self.downsample.padding_total) per_layer_padding_mode.append(self.downsample.pad_mode) per_layer_in_channels.append(self.downsample.in_channels) padding_cache = MimiConv1dPaddingCache( num_layers=len(self.encoder._mimiconv1d_layer_names) + 1, per_layer_padding=per_layer_padding, per_layer_padding_mode=per_layer_padding_mode, per_layer_in_channels=per_layer_in_channels, ) encoded_frames, encoder_past_key_values, padding_cache = self._encode_frame( input_values, num_quantizers, padding_mask.bool(), past_key_values=encoder_past_key_values, padding_cache=padding_cache, return_dict=return_dict, ) if not return_dict: return ( encoded_frames, encoder_past_key_values, padding_cache, ) return MimiEncoderOutput(encoded_frames, encoder_past_key_values, padding_cache) def _decode_frame( self, codes: torch.Tensor, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> torch.Tensor: embeddings = self.quantizer.decode(codes) embeddings = self.upsample(embeddings) decoder_outputs = self.decoder_transformer( embeddings.transpose(1, 2), past_key_values=past_key_values, return_dict=return_dict ) if return_dict: past_key_values = decoder_outputs.get("past_key_values") elif len(decoder_outputs) > 1: past_key_values = decoder_outputs[1] embeddings = decoder_outputs[0].transpose(1, 2) outputs = self.decoder(embeddings) return outputs, past_key_values def decode( self, audio_codes: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, decoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.Tensor, torch.Tensor], MimiDecoderOutput]: """ Decodes the given frames into an output audio waveform. Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be trimmed. Args: audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked*. decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ return_dict = return_dict if return_dict is not None else self.config.return_dict audio_values, decoder_past_key_values = self._decode_frame( audio_codes, past_key_values=decoder_past_key_values, return_dict=return_dict ) # truncate based on padding mask if padding_mask is not None and padding_mask.shape[-1] < audio_values.shape[-1]: audio_values = audio_values[..., : padding_mask.shape[-1]] if not return_dict: return ( audio_values, decoder_past_key_values, ) return MimiDecoderOutput(audio_values, decoder_past_key_values) @auto_docstring def forward( self, input_values: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, num_quantizers: Optional[int] = None, audio_codes: Optional[torch.Tensor] = None, encoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, decoder_past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.Tensor, torch.Tensor], MimiOutput]: r""" input_values (`torch.FloatTensor` of shape `(batch_size, channels, sequence_length)`, *optional*): Raw audio input converted to Float. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked*. num_quantizers (`int`, *optional*): Number of quantizers (i.e codebooks) to use. By default, all quantizers are used. audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). Examples: ```python >>> from datasets import load_dataset >>> from transformers import AutoFeatureExtractor, MimiModel >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> model_id = "kyutai/mimi" >>> model = MimiModel.from_pretrained(model_id) >>> feature_extractor = AutoFeatureExtractor.from_pretrained(model_id) >>> inputs = feature_extractor(raw_audio=audio_sample, return_tensors="pt") >>> outputs = model(**inputs) >>> audio_codes = outputs.audio_codes >>> audio_values = outputs.audio_values ```""" return_dict = return_dict if return_dict is not None else self.config.return_dict if padding_mask is None: padding_mask = torch.ones_like(input_values).bool() if audio_codes is None: encoder_outputs = self.encode( input_values, padding_mask, num_quantizers, encoder_past_key_values, return_dict=return_dict ) audio_codes = encoder_outputs[0] if return_dict: encoder_past_key_values = encoder_outputs.get("past_key_values") elif len(encoder_outputs) > 1: encoder_past_key_values = encoder_outputs[1] decoder_outputs = self.decode(audio_codes, padding_mask, decoder_past_key_values, return_dict=return_dict) audio_values = decoder_outputs[0] if return_dict: decoder_past_key_values = decoder_outputs.get("past_key_values") elif len(decoder_outputs) > 1: decoder_past_key_values = decoder_outputs[1] if not return_dict: return (audio_codes, audio_values, encoder_past_key_values, decoder_past_key_values) return MimiOutput( audio_codes=audio_codes, audio_values=audio_values, encoder_past_key_values=encoder_past_key_values, decoder_past_key_values=decoder_past_key_values, ) __all__ = ["MimiModel", "MimiPreTrainedModel"]