# coding=utf-8 # Copyright 2025 Google LLC and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch TimesFM model.""" import math from collections.abc import Sequence from dataclasses import dataclass from typing import Callable, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import auto_docstring, can_return_tuple, logging from ..llama.modeling_llama import LlamaRMSNorm from ..phi4_multimodal.modeling_phi4_multimodal import simple_eager_attention_forward from .configuration_timesfm import TimesFmConfig logger = logging.get_logger(__name__) @dataclass @auto_docstring class TimesFmOutput(BaseModelOutput): r""" loc (`torch.Tensor` of shape `(batch_size, )`): The mean of the time series inputs. scale (`torch.Tensor` of shape `(batch_size,)`): The scale of the time series inputs. """ loc: Optional[torch.Tensor] = None scale: Optional[torch.Tensor] = None @dataclass @auto_docstring class TimesFmOutputForPrediction(BaseModelOutput): r""" mean_predictions (`torch.Tensor` of shape `(batch_size, sequence_length)`): The mean predictions of the time series. full_predictions (`torch.Tensor` of shape `(batch_size, sequence_length)`): The full predictions of the time series including the mean and the quantiles. loss (`torch.Tensor` of shape `(1,)`, *optional*, returned when `future_values` is provided): The loss of the TimesFM model. """ mean_predictions: Optional[torch.Tensor] = None full_predictions: Optional[torch.Tensor] = None loss: Optional[Union[torch.Tensor, float]] = None class TimesFmMLP(nn.Module): """Pax MLP in pytorch.""" def __init__(self, config: TimesFmConfig): super().__init__() hidden_size = config.hidden_size intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(hidden_size, intermediate_size) self.down_proj = nn.Linear(intermediate_size, hidden_size) self.layer_norm = nn.LayerNorm(normalized_shape=hidden_size, eps=1e-6) def forward(self, x, paddings=None): gate_inp = self.layer_norm(x) gate = self.gate_proj(gate_inp) gate = F.relu(gate) outputs = self.down_proj(gate) if paddings is not None: outputs = outputs * (1.0 - paddings[:, :, None]) return outputs + x class TimesFmResidualBlock(nn.Module): """TimesFM residual block.""" def __init__(self, input_dims, hidden_dims, output_dims): super().__init__() self.input_dims = input_dims self.hidden_dims = hidden_dims self.output_dims = output_dims self.input_layer = nn.Linear(input_dims, hidden_dims) self.activation = nn.SiLU() self.output_layer = nn.Linear(hidden_dims, output_dims) self.residual_layer = nn.Linear(input_dims, output_dims) def forward(self, x): hidden = self.input_layer(x) hidden = self.activation(hidden) output = self.output_layer(hidden) residual = self.residual_layer(x) return output + residual class TimesFmRMSNorm(LlamaRMSNorm): pass class TimesFmPositionalEmbedding(nn.Module): """Generates position embedding for a given 1-d sequence.""" def __init__(self, config: TimesFmConfig): super().__init__() min_timescale = config.min_timescale max_timescale = config.max_timescale self.embedding_dims = config.hidden_size num_timescales = self.embedding_dims // 2 log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / max(num_timescales - 1, 1) self.register_buffer( "inv_timescales", min_timescale * torch.exp(torch.arange(num_timescales, dtype=torch.float32) * -log_timescale_increment), ) def forward(self, seq_length=None, position=None): """Generates a Tensor of sinusoids with different frequencies. Args: seq_length: an optional Python int defining the output sequence length. if the `position` argument is specified. position: [B, seq_length], optional position for each token in the sequence, only required when the sequence is packed. Returns: [B, seqlen, D] if `position` is specified, else [1, seqlen, D] """ if position is None and seq_length is None: raise ValueError("Either position or seq_length must be provided") if position is None: # [1, seqlen] position = torch.arange(seq_length, dtype=torch.float32, device=self.inv_timescales.device).unsqueeze(0) elif position.ndim != 2: raise ValueError(f"position must be 2-dimensional, got shape {position.shape}") scaled_time = position.view(*position.shape, 1) * self.inv_timescales.view(1, 1, -1) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) # Padding to ensure correct embedding dimension signal = F.pad(signal, (0, 0, 0, self.embedding_dims % 2)) return signal class TimesFmAttention(nn.Module): """Implements the attention used in TimesFM. One key difference is that there is _per_dim_scaling of the query.""" def __init__(self, config: TimesFmConfig, layer_idx: int): super().__init__() self.config = config self.is_causal = True self.attention_dropout = config.attention_dropout self.layer_idx = layer_idx self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_dim = config.head_dim self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_heads * self.head_dim self.scaling = nn.Parameter(torch.empty((self.head_dim,))) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim) self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim) self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size) def _scale_query(self, query: torch.Tensor) -> torch.Tensor: scale = F.softplus(self.scaling).mul(1.442695041 / math.sqrt(self.head_dim)) return query * scale[None, None, None, :] def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) query_states = self._scale_query(query_states) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) attention_interface: Callable = simple_eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=1.0, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class TimesFmDecoderLayer(nn.Module): """Transformer layer.""" def __init__(self, config: TimesFmConfig, layer_idx: int): super().__init__() self.self_attn = TimesFmAttention(config, layer_idx=layer_idx) self.mlp = TimesFmMLP(config) self.input_layernorm = TimesFmRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, paddings: torch.Tensor, output_attentions: bool = False, ) -> tuple[Optional[torch.Tensor], torch.Tensor]: # Self Attention residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, scores = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states # MLP hidden_states = self.mlp(hidden_states, paddings=paddings) return scores, hidden_states @auto_docstring class TimesFmPreTrainedModel(PreTrainedModel): config: TimesFmConfig base_model_prefix = "timesfm" _no_split_modules = ["TimesFmDecoderLayer"] main_input_name = "past_values" _supports_sdpa = True def _init_weights(self, module): super()._init_weights(module) if isinstance(module, TimesFmAttention): # Initialize scaling parameter nn.init.ones_(module.scaling) @auto_docstring class TimesFmModel(TimesFmPreTrainedModel): def __init__(self, config: TimesFmConfig): super().__init__(config) self.config = config self.input_ff_layer = TimesFmResidualBlock( input_dims=2 * config.patch_length, output_dims=config.hidden_size, hidden_dims=config.intermediate_size, ) self.freq_emb = nn.Embedding(num_embeddings=config.freq_size, embedding_dim=config.hidden_size) self.layers = nn.ModuleList( [TimesFmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) if self.config.use_positional_embedding: self.position_emb = TimesFmPositionalEmbedding(config=config) # Initialize weights and apply final processing self.post_init() def _forward_transform( self, inputs: torch.Tensor, patched_pads: torch.Tensor ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]: """Input is of shape [B, N, P].""" mu, sigma = self._timesfm_masked_mean_std(inputs, patched_pads) sigma = torch.where( sigma < self.config.tolerance, torch.tensor(1.0, dtype=sigma.dtype, device=sigma.device), sigma, ) # Normalize each patch outputs = (inputs - mu[:, None, None]) / sigma[:, None, None] outputs = torch.where( torch.abs(inputs - self.config.pad_val) < self.config.tolerance, torch.tensor(self.config.pad_val, dtype=outputs.dtype, device=outputs.device), outputs, ) return outputs, (mu, sigma) @can_return_tuple @auto_docstring def forward( self, past_values: torch.Tensor, past_values_padding: torch.LongTensor, freq: torch.Tensor, output_attentions: bool = False, output_hidden_states: bool = False, ) -> TimesFmOutput: r""" past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Past values of the time series that serves as input to the model. past_values_padding (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The padding indicator of the time series. freq (`torch.LongTensor` of shape `(batch_size,)`): Frequency indices for the time series data. """ # Reshape into patches (using view for efficiency) bsize = past_values.shape[0] patched_inputs = past_values.view(bsize, -1, self.config.patch_length) patched_pads = past_values_padding.view(bsize, -1, self.config.patch_length) patched_inputs = torch.where( torch.abs(patched_pads - 1.0) < self.config.tolerance, torch.tensor(0.0, dtype=patched_inputs.dtype, device=patched_inputs.device), patched_inputs, ) patched_pads = torch.where( torch.abs(patched_inputs - self.config.pad_val) < self.config.tolerance, torch.tensor(1.0, dtype=patched_pads.dtype, device=patched_pads.device), patched_pads, ) patched_inputs, stats = self._forward_transform(patched_inputs, patched_pads) # B x N x D patched_inputs = patched_inputs * (1.0 - patched_pads) concat_inputs = torch.cat([patched_inputs, patched_pads], dim=-1) model_input = self.input_ff_layer(concat_inputs) # A patch should not be padded even if there is at least one zero. patched_padding = torch.min(patched_pads, dim=-1)[0] # Get the values from the min result if self.config.use_positional_embedding: pos_emb = self.position_emb(model_input.shape[1]) pos_emb = torch.concat([pos_emb] * model_input.shape[0], dim=0) pos_emb = self._timesfm_shift_padded_seq(patched_padding, pos_emb) model_input += pos_emb f_emb = self.freq_emb(freq) # B x 1 x D model_input += f_emb # Convert paddings to attention mask and combine with causal mask hidden_states = model_input attention_mask = self._prepare_4d_attention_mask( attention_mask=patched_padding, sequence_length=hidden_states.shape[1], dtype=hidden_states.dtype, device=hidden_states.device, is_causal=True, ) all_attentions = [] all_hidden_states = [] for layer in self.layers[: self.config.num_hidden_layers]: scores, hidden_states = layer( hidden_states=hidden_states, attention_mask=attention_mask, paddings=patched_padding, output_attentions=output_attentions, ) if output_attentions: all_attentions.append(scores) if output_hidden_states: all_hidden_states.append(hidden_states) if output_hidden_states: all_hidden_states = [model_input] + all_hidden_states else: all_hidden_states = None return TimesFmOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions if output_attentions else None, loc=stats[0], scale=stats[1], ) @staticmethod def _prepare_4d_attention_mask( attention_mask: Optional[torch.Tensor], sequence_length: int, dtype: torch.dtype, device: torch.device, is_causal: bool = True, ) -> Optional[torch.Tensor]: """ Creates 4D attention mask and combines causal and padding masks if needed. Args: attention_mask: Optional tensor of shape (batch_size, seq_length) containing padding mask sequence_length: Length of the sequence dtype: Data type of the mask device: Device of the mask is_causal: Whether to apply causal masking Returns: 4D attention mask of shape (batch_size, 1, seq_length, seq_length) """ # Get minimum value for the dtype min_value = torch.finfo(dtype).min if dtype.is_floating_point else torch.iinfo(dtype).min # Handle padding mask if attention_mask is not None: # Convert 2D padding mask to 4D attention mask attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1) attention_mask = attention_mask * min_value # Create causal mask if needed if is_causal: causal_mask = torch.triu( torch.ones((sequence_length, sequence_length), dtype=dtype, device=device) * min_value, diagonal=1, ) causal_mask = causal_mask.view(1, 1, sequence_length, sequence_length) # Combine with padding mask if it exists if attention_mask is not None: attention_mask = torch.minimum(attention_mask, causal_mask) else: attention_mask = causal_mask return attention_mask @staticmethod def _timesfm_masked_mean_std(inputs: torch.Tensor, padding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: """Calculates mean and standard deviation of `inputs` across axis 1. It excludes values where `padding` is 1. Args: inputs: A PyTorch tensor of shape [b, n, p]. padding: A PyTorch tensor of shape [b, n, p] with values 0 or 1. Returns: A tuple containing the mean and standard deviation. We return the statistics of the first patch with more than three non-padded values. """ # Selecting the first patch with more than 3 unpadded values. def _get_patch_index(arr: torch.Tensor): indices = torch.argmax((arr >= 3).to(torch.int32), dim=1) row_sum = (arr >= 3).to(torch.int32).sum(dim=1) return torch.where(row_sum == 0, arr.shape[1] - 1, indices) pad_sum = torch.sum(1 - padding, dim=2) patch_indices = _get_patch_index(pad_sum) bidxs = torch.arange(inputs.shape[0]) arr = inputs[bidxs, patch_indices, :] pad = padding[bidxs, patch_indices, :] # Create a mask where padding is 0 mask = 1 - pad # Calculate the number of valid elements num_valid_elements = torch.sum(mask, dim=1) num_valid_elements = torch.where( num_valid_elements == 0, torch.tensor(1, dtype=num_valid_elements.dtype, device=num_valid_elements.device), num_valid_elements, ) # Calculate the masked sum and squared sum masked_sum = torch.sum(arr * mask, dim=1) masked_squared_sum = torch.sum((arr * mask) ** 2, dim=1) # Calculate the masked mean and standard deviation masked_mean = masked_sum / num_valid_elements masked_var = masked_squared_sum / num_valid_elements - masked_mean**2 masked_var = torch.where( masked_var < 0.0, torch.tensor(0.0, dtype=masked_var.dtype, device=masked_var.device), masked_var, ) masked_std = torch.sqrt(masked_var) return masked_mean, masked_std @staticmethod def _timesfm_shift_padded_seq(mask: torch.Tensor, seq: torch.Tensor) -> torch.Tensor: """Shifts rows of seq based on the first 0 in each row of the mask. Args: mask: mask tensor of shape [B, N] seq: seq tensor of shape [B, N, P] Returns: The shifted sequence. """ batch_size, num_seq, feature_dim = seq.shape new_mask: torch.BoolTensor = mask == 0 # Use argmax to find the first True value in each row indices = new_mask.to(torch.int32).argmax(dim=1) # Handle rows with all zeros indices[~new_mask.any(dim=1)] = -1 # Create index ranges for each sequence in the batch idx_range = torch.arange(num_seq, device=seq.device).view(1, -1, 1).expand(batch_size, -1, feature_dim) # Calculate shifted indices for each element in each sequence shifted_idx = (idx_range - indices[:, None, None]) % num_seq # Gather values from seq using shifted indices shifted_seq = seq.gather(1, shifted_idx) return shifted_seq class TimesFmModelForPrediction(TimesFmPreTrainedModel): """TimesFM model for quantile and mean prediction.""" def __init__(self, config: TimesFmConfig): super().__init__(config) self.config = config self.context_len = config.context_length self.horizon_len = config.horizon_length self.decoder = TimesFmModel(config) # quantile and mean output self.horizon_ff_layer = TimesFmResidualBlock( input_dims=config.hidden_size, output_dims=config.horizon_length * (1 + len(config.quantiles)), hidden_dims=config.intermediate_size, ) # Initialize weights and apply final processing self.post_init() def _preprocess( self, inputs: Sequence[torch.Tensor], freq: Sequence[int] ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Formats and pads raw inputs to feed into the model. This function both pads each time series to match the context length, and pads the inputs to meet the SPMD shape requirement. Args: inputs: A list of 1d Tensors. Each Tensor is the context time series of a single forecast task. freq: list of frequencies Returns: A tuple of: - the padded input time series to meet the model required context. - the padding indicator. - the number of padded examples for SPMD so that each core has the same number (a multiple of `batch_size`) of examples. """ input_ts, input_padding, inp_freq = [], [], [] for i, ts in enumerate(inputs): input_len = ts.shape[0] padding = torch.zeros(input_len + self.horizon_len, dtype=ts.dtype, device=ts.device) if input_len < self.context_len: num_front_pad = self.context_len - input_len ts = torch.cat([torch.zeros(num_front_pad, dtype=ts.dtype, device=ts.device), ts], dim=0) padding = torch.cat([torch.ones(num_front_pad, dtype=ts.dtype, device=padding.device), padding], dim=0) elif input_len > self.context_len: ts = ts[-self.context_len :] padding = padding[-(self.context_len + self.horizon_len) :] input_ts.append(ts) input_padding.append(padding) inp_freq.append(freq[i]) return ( torch.stack(input_ts, dim=0), torch.stack(input_padding, dim=0), torch.tensor(inp_freq, dtype=torch.int32).reshape(-1, 1), ) def _postprocess_output( self, model_output: torch.Tensor, stats: tuple[torch.Tensor, torch.Tensor] ) -> torch.Tensor: """Postprocess output of stacked transformer.""" # B x N x (H.Q) output_ts = self.horizon_ff_layer(model_output) # Reshape using view b, n, _ = output_ts.shape output_ts = output_ts.view(b, n, self.config.horizon_length, len(self.config.quantiles) + 1) mu, sigma = stats return output_ts * sigma[:, None, None, None] + mu[:, None, None, None] def _quantile_loss(self, predictions: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: losses = [] for i, q in enumerate(self.config.quantiles): errors = targets - predictions[..., i] loss = torch.max((q - 1) * errors, q * errors) losses.append(loss.mean()) return torch.stack(losses).mean() @can_return_tuple @auto_docstring def forward( self, past_values: Sequence[torch.Tensor], freq: Optional[Sequence[Union[torch.Tensor, int]]] = None, window_size: Optional[int] = None, future_values: Optional[torch.Tensor] = None, forecast_context_len: Optional[int] = None, return_forecast_on_context: bool = False, truncate_negative: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> TimesFmOutputForPrediction: r""" past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Past values of the time series that serves as input to the model. freq (`torch.LongTensor` of shape `(batch_size,)`): Frequency indices for the time series data. window_size (`int`, *optional*): Window size of trend + residual decomposition. If None then we do not do decomposition. future_values (`torch.Tensor`, *optional*): Optional future time series values to be used for loss computation. forecast_context_len (`int`, *optional*): Optional max context length. return_forecast_on_context (`bool`, *optional*): True to return the forecast on the context when available, i.e. after the first input patch. truncate_negative (`bool`, *optional*): Truncate to only non-negative values if any of the contexts have non-negative values, otherwise do nothing. output_attentions (`bool`, *optional*): Whether to output the attentions. output_hidden_states (`bool`, *optional*): Whether to output the hidden states. Example: ```python >>> from transformers import TimesFmModelForPrediction >>> model = TimesFmModelForPrediction.from_pretrained("google/timesfm-2.0-500m-pytorch") >>> forecast_input = [torch.linspace(0, 20, 100).sin(), torch.linspace(0, 20, 200).sin(), torch.linspace(0, 20, 400).sin()] >>> frequency_input = torch.tensor([0, 1, 2], dtype=torch.long) >>> # Generate >>> with torch.no_grad(): >>> outputs = model(past_values=forecast_input, freq=frequency_input, return_dict=True) >>> point_forecast_conv = outputs.mean_predictions >>> quantile_forecast_conv = outputs.full_predictions ``` """ if forecast_context_len is None: fcontext_len = self.context_len else: fcontext_len = forecast_context_len # Get device from first input tensor device = past_values[0].device # Truncate inputs to forecast_context_len inputs = [ts[-fcontext_len:] for ts in past_values] inp_min = torch.min(torch.stack([torch.min(ts) for ts in inputs])) if window_size is not None: new_inputs = [] new_freqs = [] for i, ts in enumerate(inputs): new_inputs.extend(self._timesfm_moving_average(ts, window_size)) if freq is not None: new_freqs.extend([freq[i]] * 2) inputs = new_inputs if freq is not None: freq = new_freqs if freq is None: logger.info("No frequency provided via `freq`. Default to high (0).") freq = [0] * len(inputs) if output_attentions is None: output_attentions = self.config.output_attentions if output_hidden_states is None: output_hidden_states = self.config.output_hidden_states input_ts, input_padding, inp_freq = self._preprocess(inputs, freq) # Move tensors to the same device as input input_ts = input_ts.to(device) input_padding = input_padding.to(device) inp_freq = inp_freq.to(device) final_out = input_ts context_len = final_out.shape[1] full_outputs = [] if input_padding.shape[1] != final_out.shape[1] + self.horizon_len: raise ValueError( "Length of paddings must match length of input + horizon_len:" f" {input_padding.shape[1]} != {final_out.shape[1]} + {self.horizon_len}" ) output_patch_len = self.config.horizon_length num_decode_patches = (self.horizon_len + output_patch_len - 1) // output_patch_len for step_index in range(num_decode_patches): current_padding = input_padding[:, 0 : final_out.shape[1]] input_ts = final_out[:, -fcontext_len:] input_padding = current_padding[:, -fcontext_len:] decoder_output = self.decoder( past_values=input_ts, past_values_padding=input_padding, freq=inp_freq, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) fprop_outputs = self._postprocess_output( decoder_output.last_hidden_state, (decoder_output.loc, decoder_output.scale), ) if return_forecast_on_context and step_index == 0: # For the first decodings step, collect the model forecast on the # context except the unavailable first input batch forecast. new_full_ts = fprop_outputs[:, :-1, : self.config.patch_length, :] # We have to use reshape and not view for non-contiguous memory new_full_ts = new_full_ts.reshape(new_full_ts.size(0), -1, new_full_ts.size(3)) full_outputs.append(new_full_ts) # (full batch, last patch, output_patch_len, index of mean forecast = 0) new_ts = fprop_outputs[:, -1, :output_patch_len, 0] new_full_ts = fprop_outputs[:, -1, :output_patch_len, :] # (full batch, last patch, output_patch_len, all output indices) full_outputs.append(new_full_ts) final_out = torch.concatenate([final_out, new_ts], axis=-1) if return_forecast_on_context: # `full_outputs` indexing starts at after the first input patch. full_outputs = torch.concatenate(full_outputs, axis=1)[ :, : (context_len - self.config.patch_length + self.horizon_len), : ] else: # `full_outputs` indexing starts at the forecast horizon. full_outputs = torch.concatenate(full_outputs, axis=1)[:, 0 : self.horizon_len, :] mean_outputs = full_outputs[:, :, 0] if window_size is not None: mean_outputs = mean_outputs[0::2, ...] + mean_outputs[1::2, ...] full_outputs = full_outputs[0::2, ...] + full_outputs[1::2, ...] if inp_min >= 0 and truncate_negative: mean_outputs = torch.maximum(mean_outputs, 0.0) full_outputs = torch.maximum(full_outputs, 0.0) loss = None if future_values is not None: mse_loss = F.mse_loss(mean_outputs, future_values) quantile_loss = self._quantile_loss(full_outputs[:, :, 1:], future_values) loss = mse_loss + quantile_loss return TimesFmOutputForPrediction( last_hidden_state=decoder_output.last_hidden_state, attentions=decoder_output.attentions if output_attentions else None, hidden_states=decoder_output.hidden_states if output_hidden_states else None, mean_predictions=mean_outputs, full_predictions=full_outputs, loss=loss, ) @staticmethod def _timesfm_moving_average(arr: torch.Tensor, window_size: int) -> list[torch.Tensor]: """Calculates the moving average using PyTorch's convolution function.""" # Pad with zeros to handle initial window positions arr_padded = F.pad(arr, (window_size - 1, 0), "constant", 0) # Create a convolution kernel kernel = torch.ones(window_size, dtype=arr.dtype, device=arr.device) / window_size # Apply convolution to calculate the moving average smoothed_arr = F.conv1d(arr_padded.view(1, 1, -1), kernel.view(1, 1, -1)).squeeze() return [smoothed_arr, arr - smoothed_arr] __all__ = ["TimesFmModelForPrediction", "TimesFmPreTrainedModel", "TimesFmModel"]