import base64 from typing import Any, Dict, Optional, Union from huggingface_hub.hf_api import InferenceProviderMapping from huggingface_hub.inference._common import RequestParameters, _as_dict from huggingface_hub.inference._providers._common import ( BaseConversationalTask, BaseTextGenerationTask, TaskProviderHelper, filter_none, ) class NebiusTextGenerationTask(BaseTextGenerationTask): def __init__(self): super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai") def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: output = _as_dict(response)["choices"][0] return { "generated_text": output["text"], "details": { "finish_reason": output.get("finish_reason"), "seed": output.get("seed"), }, } class NebiusConversationalTask(BaseConversationalTask): def __init__(self): super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai") def _prepare_payload_as_dict( self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping ) -> Optional[Dict]: payload = super()._prepare_payload_as_dict(inputs, parameters, provider_mapping_info) response_format = parameters.get("response_format") if isinstance(response_format, dict) and response_format.get("type") == "json_schema": json_schema_details = response_format.get("json_schema") if isinstance(json_schema_details, dict) and "schema" in json_schema_details: payload["guided_json"] = json_schema_details["schema"] # type: ignore [index] return payload class NebiusTextToImageTask(TaskProviderHelper): def __init__(self): super().__init__(task="text-to-image", provider="nebius", base_url="https://api.studio.nebius.ai") def _prepare_route(self, mapped_model: str, api_key: str) -> str: return "/v1/images/generations" def _prepare_payload_as_dict( self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping ) -> Optional[Dict]: mapped_model = provider_mapping_info.provider_id parameters = filter_none(parameters) if "guidance_scale" in parameters: parameters.pop("guidance_scale") if parameters.get("response_format") not in ("b64_json", "url"): parameters["response_format"] = "b64_json" return {"prompt": inputs, **parameters, "model": mapped_model} def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: response_dict = _as_dict(response) return base64.b64decode(response_dict["data"][0]["b64_json"]) class NebiusFeatureExtractionTask(TaskProviderHelper): def __init__(self): super().__init__(task="feature-extraction", provider="nebius", base_url="https://api.studio.nebius.ai") def _prepare_route(self, mapped_model: str, api_key: str) -> str: return "/v1/embeddings" def _prepare_payload_as_dict( self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping ) -> Optional[Dict]: return {"input": inputs, "model": provider_mapping_info.provider_id} def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: embeddings = _as_dict(response)["data"] return [embedding["embedding"] for embedding in embeddings]